اثر پارامترهای ساخت غشای نامتقارن ماتریس ترکیبی ماتریمیدMIL-53/ PMHS بر جداسازی CO2 از CH4

نوع مقاله : پژوهشی

نویسندگان

1 رشت، دانشگاه آزاد اسلامی، واحد رشت، دانشکده علوم پایه، گروه مهندسی شیمی، صندوق پستی 3516-41335

2 تهران، دانشگاه تربیت مدرس،دانشکده مهندسی شیمی، صندوق پستی 143-14115

چکیده

در این مقاله، غشای نامتقارن ماتریس ترکیبی ماتریمید MIL-53، با لایه پوشسی سیلیکونی (PMHS) ساخته شد. سه پارامتر اصلی در ساخت این غشای نامتقارن شامل غلظت پلیمر ماتریمید، غلظت پلیمر لایه پوششی و درصد ذرات چارچوب آلی-فلزی MIL-53 با روش طراحی آزمون بهینه‌سازی شد. سپس، تراوایی گاز CO2 و CH4 در تمام غشاهای ساخته شده اندازه‌گیری شد. برای بررسی ساختار غشا، ساختار سطح مشترک پلیمر و ذرات و اثر تغییر پارامترهای ساخت در ساختار غشا، تصاویر SEM از سطح مقطع آن‌ها گرفته شد. همچنین، آزمون‌های TGA و FTIR برای بررسی مقاومت گرمایی غشا و پیوندهای موجود در آن انجام شد. نتایج نشان داد، غشاهای ساخته شده ساختارمتخلخل با حفره‌های انگشتی داشته و در درصدهای کم تا متوسط از ذرات افزوده شده، فضاهای خالی گزینش‌ناپذیر در سطح مشترک تشکیل نشده است. مقاومت گرمایی غشا با افزودن ذرات MIL-53 افزایش یافت و دمای شکست پلیمر از 410 به 450 درجه سلسیوس افزایش یافت. نتایج تراوایی غشاها نشان داد، بیشترین مقدارگزینش‌پذیری CO2/CH4 23.6 مربوط به غشای ماتریمید (wt %20)-MIL53 (wt %15)/PMHS(wt %10) بود. اگرچه در غشاهای حاوی 30% وزنی ذرات به دلیل تجمع آن‌ها و وجود شکاف، گزینش‌پذیری کاهش یافت و به 7.5 رسید. نتایج طراحی آزمون نشان داد، پارامتر غلظت لایه پوششی با اهمیت است و با افزایش غلظت پلیمر، گزینش‌پذیری افزایش می‌یابد. در حالی که غلظت پلیمر لایه گزینش‌پذیر در محدوده آزمون شده، اثر معناداری بر عملکرد غشا نداشت. بهینه‌سازی پارامترها نشان داد، غشای حاوی %15.5 وزنی ذرات با غلظت پلیمر %17.8 و غلظت لایه پوششی %13.2 بیشترین مقدار گزینش‌پذیری و تراوایی CO2 را دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Fabrication Parameters of Asymmetric Mixed Matrix Matrimid-MIL-53/PMHS Membrane for CO2/CH4 Separation

نویسندگان [English]

  • Fatereh Dorosti 1
  • Mohammadreza Omidkhah 2
1 Chemical Engineering Group, Faculty of Science, Rasht Branch, Islamic Azad University, P.O. Box: 41335-3516, Rasht, Iran
2 Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box: 14115-143, Tehran, Iran
چکیده [English]

Asymmetrically mixed matrix Matrimid-MIL-53 membranes with silicone cover layer were fabricated. For better understanding of membrane fabrication process, three main parameters of fabrication, Matrimid concentration, silicone concentration and weight percentage of metal organic framework (MIL-53) particles, were optimized by an experimental design method. Cross-section SEM images were used to study the membrane structure and polymer-particles interface. Moreover, thermal resistance of the membranes and the existence of various bonds in them were investigated by FTIR and TGA analyses. The results showed that membranes had porous structure with finger-like morphology. At low and moderate percentages of particles, there were no non-selective voids observed at polymer-particles interface. The thermal resistance of membranes increased with the increase of MIL-53 weight percentage and the destruction temperature of polymer increased from 410°C to 450°C. The permeability tests results showed that the Matrimid (20% wt)-MIL-53(15% wt)/PMHS (10%wt) membrane exhibited the highest level of CO2/CH4 selectivity (23.6). However, in the membrane with 30 wt% particles loading, selectivity decreased due to particles agglomeration and void formation. The experimental design results showed that the concentration of silicone in covering solution had significant effect. CO2 and CH4 permeability decreased and ideal selectivity of CO2/CH4 increased with silicone concentration enhancement. Although the Matrimid concentration had a little effect on CO2/CH4 ideal selectivity, its enhancement increased the selectivity of the gases. The optimization results showed the membrane with 17.8% of Matrimd polymer, 13.2% of silicone polymer and 15.5 wt% of MIL-53 particle displayed the highest selectivity and CO2 permeability.

کلیدواژه‌ها [English]

  • mixed matrix membrane
  • asymmetric membrane
  • metal organic framework
  • Matrimid
  • MIL-53
1. Abedini R., Mousavi S.M., and Aminzadeh R., A Novel Cellulose Acetate (CA) Membrane Using TiO2 Nanoparticles: Preparation,Characterization and Permeation Study, Desalination, 277, 40-45, 2011.
2. Mulder M., Basic Principles of Membrane Technology,Netherlands, Kluwer Academic, 1995.
3. Zhang Y., Sunarso J., Liu S., and Wang R., Current Status and Development of Membranes for CO2/CH4 Separation: A Review, Int. J. Greenhouse Gas Cont., 12, 84-107, 2013.
4. Tantekin-Ersolmaz S.B., Oral Ç.A., Tatlıer M., Şenatalar A.E., Schoeman B., and Sterte J., Effect of Zeolite Particle Size on the Performance of Polymer-Zeolite Mixed Matrix Membranes, J. Membr. Sci., 175, 285-288, 2000.
5. Semsarzadeh M.A. and Vakili E., Preparation and Characterization of Polyurethane-Polydimethylsiloxane/Polyamide12 -b-Polytetramethylene Glycol Blend Membranes for Gas
Separation, Iran. J. Polym. Sci. Technol (Persian), 26, 337-348,2013.
6. Khalilinejad I., Kargari A., and Sanaeepur H., Preparation of Ethylene Vinyl Acetate/Zeolite 4A Mixed Matrix Membrane for CO2/N2 Separation, Iran. J. Polym. Sci. Technol. (Persian), 29, 231-247, 2016.
7. Gonga H., Leeb S.S., and Baea T., Mixed-Matrix Membranes Containing Inorganically Surface-Modified 5A Zeolite for Enhanced CO2/CH4 Separation, Micropor. Mesopor. Mater., 237, 82-89, 2017.
8. Rajabi Z., Afshar Taromi F., Kargari A., and Sanaeepur H. CO2/N2 Gas Separation Using Nanocomposite Membranes Comprised of Ethylene-Propylene-Diene Monomer/Multi-Walled Carbon Nanotubes (EPDM/MWCNT), Iran. J. Polym. Sci. Technol (Persian), 28, 211-224, 2015.
9. Chung T.S., Jiang L.Y., Li Y., and Kulprathipanja S., Mixed Matrix Membranes (MMMs) Comprising Organic Polymers with Dispersed Inorganic Fillers for Gas Separation, Prog. Polym. Sci., 32, 483-507, 2007.
10. Dorosti F., Omidkhah M.R., Pedram M.Z., and Moghadam F., Fabrication and Characterization of Polysulfone/Polyimide- Zeolite Mixed Matrix Membrane for Gas Separation, Chem. Eng. J., 171, 1469-1476, 2011.
11. Adams R., Carson C., Ward J., Tannenbaum R., and Korosl W., Metal Organic Framework Mixed Matrix Membranes for Gas Separations, Micropor. Mesopor. Mater., 131, 13-20, 2010.
12. Boroglu M.S. and Yumru A.B., Gas Separation Performance of 6FDA-DAM-ZIF-11 Mixed-Matrix Membranes for H2/CH4 and CO2/CH4 Separation, Sep. Purif. Technol., 173, 269-279, 2017.
13. Dong L., Chen M., Li J., Shi D., Dong W., Li X., and Bai Y., Metal-organic Framework-Graphene Oxide Composites: A Facile Method to Highly Improve the CO2 Separation Performance of Mixed Matrix Membranes, J. Membr. Sci., 520, 801-811, 2016.
14. Tien-Binha N., Vinh-Thanga H., Chenb X.Y., Rodriguea D., and Kaliaguine S., Crosslinked MOF-Polymer to Enhance Gas Separation of Mixed Matrix Membranes, J. Membr. Sci., 520, 941-950, 2016.
15. Abedini R., Omidkhah M., and Dorosti F., CO2/CH4 Separation by a Mixed Matrix Membrane of Polymethylpentyne/MIL-53 Particles, Iran. J. Polym. Sci. Technol. (Persian), 27, 337-351, 2014.
16. Abedini R., Omidkhah M., and Dorosti F., Highly Permeable Poly(4-methyl-1-pentene)/NH2-MIL53 (Al) Mixed Matrix Membrane for CO2/CH4 Separation, RSC Adv., 4, 36522-36537, 2014.
17. Abedini R., Omidkhah M., and Dorosti F., Hydrogen Separation and Purification with Poly(4-methyl-1-pentyne)/MIL53 Mixed Matrix Membrane Based on Reverse Selectivity, Int. J. Hydrogen Energ., 39, 7897-7909, 2014.
18. Basu S., Odena A.C., and Vankelecom I.F.J., MOF-Containing Mixed-Matrix Membranes for CO2/CH4 and CO2/N2 Binary Gas Mixture Separations, Sep. Purif. Technol., 81, 31-40, 2011.
19. Zhang Y., Musselman I.H., Ferraris J.P., and Balkus K.J. (Jr.), Gas Permeability Properties of Matrimid Membranes Containing the Metal-Organic Framework Cu-BPY-HFS, J. Membr. Sci., 313, 170-181, 2008.
20. Burmann P., Zornoza B., Téllez C., and Coronas J., Mixed Matrix Membranes Comprising MOFs and Porous Silicate Fillers Prepared via Spin Coating for Gas Separation, Chem. Eng. Sci., 107, 66-75, 2014.
21. Brunetti A., Simone S., Scura F., Barbieri G., Figoli A., and Drioli E., Hydrogen Mixture Separation with PEEK-WC Asymmetric Membranes, Sep. Purif. Technol., 69, 195-204, 2009.
22. Abedini R., Mousavi S.M., and Aminzadeh R., Effect of Sonochemical Synthesized TiO2 Nanoparticles and Coagulation Bath Temperature on Morphology, Thermal Stability and Pure Water Flux of Asymmetric Cellulose Acetate Nanocomposite Membranes Prepared via Phase Inversion Method, Chem. Ind. Chem. Eng. Q., 18, 385-398, 2012.
23. Chen X.Y., Thang H.V., Rodrigue D., and Kaliaguine S., Amine- Functionalized MIL-53 Metal-Organic Framework in Polyimide Mixed Matrix Membranes for CO2/CH4 Separation. Ind. Eng. Chem. Res., 51, 6895-6906, 2012.
24. Dorosti F., Omidkhah M., and Abedini R., Fabrication and Characterization of Matrimid/MIL-53 Mixed Matrix Membrane for CO2/CH4 Separation, Chem. Eng. Res. Des., 92, 2439-2448, 2014.
25. Finsy V., Maa L., Alaerts L., Vos D.E., Baron G.V., and Denayer J.F.M., Separation of CO2/CH4 Mixtures with the MIL-53(Al) Metal-Organic Framework, Micropor. Mesopor. Mater., 120, 221-227, 2009.
26. Ismail A.F. and Lai P.Y., Effects of Phase Inversion and Rheological Factors on Formation of Defect-Free and Ultrathin- Skinned Asymmetric Polysulfone Membranes for Gas Separation, Sep. Purif. Technol., 33, 127-143, 2003.
27. Kim J., Kim W.Y., and Ahn W.S., Amine-Functionalized MIL- 53(Al) for CO2/N2 Separation: Effect of Textural Properties, Fuel-Guildford, 102, 574-579, 2012.
28. Li J.R., Ma Y., McCarthy M.C., Sculley J., Yu J., Jeong H.K., Balbuena P.B., and Zhou H.C., Carbon Dioxide Capture-Related Gas Adsorption and Separation in Metal-Organic Frameworks, Coordin. Chem. Rev., 255, 1791-1823, 2011.
29. Basu S., Odena A.C., and Vankelecom I.F.J., Asymmetric Matrimid®/[Cu3(BTC)2] Mixed-Matrix Membranes for Gas Separations, J. Membr. Sci., 362, 478-487, 2010.