اثر ید مولکولی و بازدارنده‌ رادیکالی 4-ترشیوبوتیل کتکول بر پلیمرشدن رادیکالی استیرن

نوع مقاله : پژوهشی

نویسندگان

تهران، دانشگاه تربیت مدرس، دانشکده مهندسی شیمی، گروه مهندسی فرایندهای پلیمریزاسیون، صندوق پستی 114-14115

چکیده

اثر ید مولکولی بر وزن مولکولی و توزیع وزن مولکولی پلی­‌استیرن تولید شده در پلیمرشدن رادیکالی استیرن بررسی شد. پلیمرشدن رادیکالی استیرن شروع شده با آغازگر 2،׳2-آزوبیس(ایزوبوتیرونیتریل) (AIBN) در دمای 70 درجه سلسیوس و در مجاورت مولکول ید انجام شد. از آزمون‌های رنگ‌نگاری ژل تراوایی (GPC) و طیف‌بینی رزونانس مغناطیسی پروتون (1H NMR) برای شناسایی پلیمرها استفاده شد. نتایج این آزمون‌ها شامل تبدیل واکنش، وزن مولکولی متوسط و توزیع وزن مولکولی با نتایج به­ دست آمده برای پلیمرشدن رادیکالی استیرن شروع شده با آغازگر AIBN در دمای مشابه، در غیاب مولکول‌های ید مقایسه شد. نتایج نشان داد، ید اثر بسزایی بر وزن مولکولی و توزیع وزن مولکولی پلیمر نهایی سنتز شده دارد و به­‌خوبی قابلیت کنترل پلیمرشدن را با سازوکار پلیمرشدن رادیکالی انتقال ید معکوس دارد و به تولید پلیمری با وزن مولکولی l10600g/molو توزیع وزن مولکولی 1.3 منجر شود. با توجه به اهمیت دوره‌ القا در پلیمرشدن رادیکالی انتقال ید معکوس، دوره‌ القا با افزایش دما تا 120 درجه بسیار کوتاه‌ ­تر شد و گونه‌های تشکیل شده طی این دوره به کنترل بهتر وزن مولکولی منجر شدند. همچنین، با توجه به اینکه مولکول‌های ید در ابتدا به‌­عنوان بازدارنده‌ رادیکالی عمل می‌کنند، نقش وجود بازدارنده‌ رادیکالی 4-ترشیوبوتیل کتکول در کنار مولکول‌های ید در پلیمرشدن رادیکالی استیرن شروع شده با آغازگر AIBN بررسی شد. مشاهده شد، وجود بازدارنده‌ رادیکالی، مانع از مصرف مولکول‌های ید به ­وسیله رادیکال‌های حاصل از تجزیه آغازگر شیمیایی و تشکیل آلکیل هالید طی دوره‌ القا می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Molecular Iodine and 4-tert-Butylcatechol Radical Inhibitor on the Radical Polymerization of Styrene

نویسندگان [English]

  • Mojtaba Bozorg
  • Mahdi Abdollahi
  • Mohammad Ali Semsarzadeh
Polymer Reaction Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box: 14115-114, Tehran, Iran
چکیده [English]

The presence of molecular iodine was studied in relation the molecular weight and molecular weight distribution of polystyrene, produced by radical poly merization. Radical polymerization of styrene initiated by 2,2׳-azobisisobutyronitrile (AIBN) was performed at 70°C in the presence of molecular iodine. The synthesized polymers were characterized by gel permeation chromatography (GPC) and proton- nuclear magnetic resonance (1H NMR) techniques. The results of these reactions including conversion data, number-average molecular weight and molecular weight distribution were compared with those obtained for styrene radical polymerization initiated by AIBN at the same temperature in the absence of molecular iodine. It was found that the presence of iodine had a profound effect on the molecular weight and its distribution in the produced polystyrene. This was attributed to the ability of iodine to control the polymerization of styrene initiated by AIBN via reverse iodine transfer polymerization (RITP) mechanism. The polymer produced by this method had a molecular weight of 10600 g/mol with a molecular weight polydispersity index of 1.3. Due to the importance of induction period in reverse iodine transfer radical polymerization, increasing the temperature to 120°C during the induction period resulted in shorter induction periods and the produced species led to better control of the molecular weight. Also, due to the role of iodine molecules as a radical inhibitor, the presence of a secondary radical inhibitor, i.e. 4-tert-butylcatechol, along with the iodine was investigated in radical polymerization of polystyrene initiated by AIBN. It was observed that the secondary radical inhibitor prevented the consumption of the iodine molecules by the radicals produced from decomposition of the AIBN initiator; therefore, alkyl halides were not produced during the induction period.

کلیدواژه‌ها [English]

  • radical polymerization
  • styrene
  • inhibitor
  • controlled polymerization
  • reverse iodine transfer polymerization
  1. Tran M.P., Detrembleur C., Alexandre M., Jerome C., and Thomassin J.M., The Influence of Foam Morphology of Multi-Walled Carbon Nanotubes/Poly(methyl methacrylate) Nanocomposites on Electrical Conductivity, Polymer, 54, 3261-3270, 2013.
  2. Zhang H.B., Yan Q., Zheng W.G., He Z., and Yu Z.Z., Tough Graphene-Polymer Microcellular Foams for Electromagnetic Interference Shielding, Appl. Mater. Interfaces, 3, 918-924, 2011.
  3. Park K.Y., Lee S.E, Kim C.G., and Han J.H., Fabrication and Electromagnetic Characteristics of Electromagnetic Wave Absorbing Sandwich Structures, Compos. Sci. Technol., 66, 576-584, 2006.
  4. Huo J., Wang L., and Yu H., Polymeric Nanocomposites for Electromagnetic Wave Absorption, Mater. Sci., 44, 3917-3927, 2009.
  5. Jung W.K., Kim B., Won M.S., and Ahn S.H., Fabrication of Radar Absorbing Structure (RAS) Using GFR-Nanocomposite and Spring-Back Compensation of Hybrid Composite RAS Shells, Compos. Struct., 75, 571-576, 2006.
  6. Oh J.H., Oh K.S., Kim C.G., and Hong C.S., Design of Radar Absorbing Structures Using Glass/Epoxy Composite Containing Carbon Black in X-Band Frequency Ranges, Composites: Part B, 35, 49-56, 2004.
  7. Gurunathan T., Rao Chepuri R.K., Narayan R., and Raju K.V.S.N., Polyurethane Conductive Blends and Composites: Synthesis and Applications Perspective, Mater. Sci., 48, 67-80, 2013.
  8. Peng M., Zhou M., Jin Z., Kong W., Xu Z., and Vadillo D., Effect of Surface Modifications of Carbon Black (CB) on the Properties of CB/Polyurethane Foams, Mater. Sci., 45, 1065-1073, 2010.
  9. Li F., Qi L., Yang J., Xu M., Luo X., and Ma D., Polyurethane/Conducting Carbon Black Composites: Structure, Electric Conductivity, Strain Recovery Behavior, and Their Relationships, J. Appl. Polym. Sci., 75, 68-77, 2000.
  10. Xiong C., Zhou Z., Xu W., Hu H., Zhang Y., and Dong L., Polyurethane/Carbon Black Composites with High Positive Temperature Coefficient and Low Critical Transformation Temperature, Carbon, 43, 1778-1814, 2005.
  11. Chodak I., Omastova M., and Pionteck J., Relation Between Electrical and Mechanical Properties of Conducting Polymer Composites, J. Appl. Polym. Sci., 82, 1903-1906, 2001.
  12. Novak I., Krupa I., and Chodak I., Relation Between Electrical and Mechanical Properties in Polyurethane/Carbon Black Adhesives, Mater. Sci. Lett., 21, 1039-1041, 2002.
  13. Quievy N., Bollen P., Thomassin J.M., Detrembleur C., Pardoen T., Bailly C., and Huynen Isabelle, Electromagnetic Absorption Properties of Carbon Nanotube Nanocomposite Foam Filling Honeycomb Waveguide Structures, IEEE Trans. Electromagn. Compat., 54, 43-51, 2012.
  14. Thomassin J.M., Pagnoulle C., Bednarz L., Huynen I., Jerome R., and Detrembleur C., Foams of Polycaprolactone/MWNT Nanocomposites for Efficient EMI Reduction, Mater. Chem., 18, 792-796, 2008.
  15. Lee S.T. and Ramesh N.S., Polymeric Foams, CRC, USA, 1st ed., 1-6, 2004.
  16. Rende D., Schadler L.S., and Ozisik R., Controlling Foam Morphology of Poly(methyl methacrylate) Via Surface Chemistry and Concentration of Silica Nanoparticles and Supercritical Carbon Dioxide Process Parameters, Chemistry, 2013, 1-13, 2013.
  17. Foresta C., Chaumonta P., Cassagnaua P., Swobodab B., and Sonntag P., Polymer Nano-Foams for Insulating Applications Prepared from CO2 Foaming, Prog. Polym. Sci., 41, 122-145, 2015.
  18. Soltani Alkouh M., Famili M.H.N., and Moeini M.H., The Investigation of Foaming Effect on Radar Absorbing Properties of PMMA/MWCNT Composites, Iran. J. Polym. Sci. Technol. (Persian), 28, 189-195, 2015.
  19. Mokhtari Motameni Shirvan M. and Famili M.H.N., Effect of Stabilization on the Morphology of Polystyrene and Supercritical Carbon Dioxide Thermoplastic Foam, Iran. J. Polym. Sci. Technol. (Persian), 28, 505-515, 2016.
  20. Mokhtari Motameni Shirvan M., Famili M.H.N., Soltani Alkouh M., and Golbang A., The Effect of Pressurized and Fast Stabilization on One Step Batch Foaming Process for the Investigation of Cell Structure Formation, J. Supercrit. Fluids, 112, 143-152, 2016.
  21. Hong Y.K., Lee C.Y., Jeong C.K., Lee D.E., and Kim K., Method and Apparatus to Measure Electromagnetic Interference Shielding Efficiency and Its Shielding Characteristics in Broadband Frequency Ranges, Rev. Scie. Instrum., 74, 1098-1102, 2003.
  22. Zhanga T., Huangb D., Yangd Y., Kanga F., and Gub J., Fe3O4/Carbon Composite Nanofiber Absorber With Enhanced Microwave Absorption Performance, Mater. Sci. Eng. B, 178, 1-9, 2013.
  23. Zeng C., Hosseiny N., Zhang C., and Wang B., Synthesis and Processing of PMMA Carbon Nanotube Nanocomposite Foams, Polymer, 51, 655-664, 2010.
  24. Balanis C.A., Advanced Engineering Electromagnetics, John Wiley and Sons, USA, 1st ed., 180-229, 1989.
  25. Zhang H., Zhang J., and Zhang H., Electromagnetic Properties of Silicon Carbide Foams and Their Composites with Silicon Dioxide as Matrix in X-Band, Composites, Part A, 38, 602-608, 2007.
  26. Kolokolova L. and Gustafson B.A.S., Scattering by Inhomogeneous Particles: Microwave Analog Experiments and Comparison to Effective Medium Theories, J. Quantitative Spectrosc. Radiat. Transf., 70, 611-625, 2001.
  27. Zhang H., Zhang J., and Zhang H., Numerical Predictions for Radar Absorbing Silicon Carbide Foams Using a Finite Integration Technique with a Perfect Boundary Approximation, Smart Mater. Struct., 15, 759-766, 2006.
  28. Aghajari E., Morady S., Famili M.H.N., Zakiyan E., and Golbang A., Responses of Polystyrene/MWCNT Nanocomposites to Electromagnetic Waves and the Effect of Nanotubes Dispersion,Iran. J. Polym. Sci. Technol. (Persian), 27, 193-201, 2014.
  29. Arab-Baraghi M., Mohammadizadeh M., and Jahanmardi R., A Simple Method for Preparation of Polymer Microcellular Foams by In-Situ Generation of Supercritical Carbon Dioxide from Dry Ice, Iran. Polym. J., 23, 427-435, 2014.
  30. Wee D., Seong D.G., and Youn J.R., Processing of Microcellular Nanocomposite Foams by Using a Supercritical Fluid, Fiber. Polym., 5, 160-169, 2004.
  1. Zakiyan E., Famili M.H.N., and Ako M., Heterogeneous Nucleation in Batch Foaming of Polystyrene in Presence of Nanosilica as a Nucleating Agent, Iran. J. Polym. Sci. Technol. (Persian), 25, 231-240, 2012.