تثبیت کاتالیزگر متالوسن بر نانوسیلیکای دودی برای تهیه پلی‌اتیلن بدون گره‌خوردگی

نوع مقاله: پژوهشی

نویسندگان

تبریز، دانشگاه صنعتی سهند، دانشکده مهندسی شیمی، گروه مهندسی پلیمر، صندوق پستی 1996-51335

چکیده

فرضیه: تولید پلی‌اتیلن با وزن مولکولی نسبتاً زیاد، خواص بهبودیافته و فرایندپذیری قابل‌قبول تاکنون هدف بسیاری از پژوهش‌ها بوده است. در پلیمرشدن دوغابی، تثبیت کاتالیزگر‌های همگن متالوسن بر پایه‌هایی با ابعاد نانو افزون بر بهبود خواص مکانیکی و گرمایی محصول می‌تواند موجب کنترل شکل‌شناسی و توزیع مناسب اندازه ذره شود. سطح ویژه ذرات پایه می‌تواند از عوامل اثرگذار بر فرایند تثبیت کاتالیزگر و خواص محصول باشد. هدف اصلی این پژوهش، تولید نانوکامپوزیت پلی‌اتیلن-نانوسیلیکا بدون گره‌خوردگی با روش پلیمرشدن درجا بود.
روش‌ها: کاتالیزگر متالوسن زیرکونوسن‌دی‌کلرید (Cp2ZrCl2) روی ذرات اصلاح سطحی‌شده نانو‌سیلیکای دودی تثبیت شد. از سه نوع نانوسیلیکای دودی با سطح ویژه 50، 200 و 380m2/g استفاده شد. ابتدا روی سطح نانوذرات سیلیکای اصلاح گرمایی‌شده، با استفاده از کمک‌کاتالیزگر متیل‌آلومینوکسان اصلاح شیمیایی انجام شد. سپس، با افزودن کاتالیزگر Cp2ZrCl2 به سامانه، واکنش تثبیت و فعال‌سازی کاتالیزگر به‌طور هم‌زمان انجام شد. در نهایت، پلیمرشدن اتیلن با استفاده از کاتالیزگر تهیه‌شده در فشار جو و دمای 30 درجه سلسیوس  انجام شد.
یافته‌ها: مقدار بیشینه بازده پلیمرشدن، مربوط به کاتالیزگر ناهمگن‌شده روی نانوسیلیکا با سطح ویژه  200m2/g بود. نتایج کشش‌پذیری در حالت جامد و افزایش تدریجی مدول در آزمون رئومتری پویش زمان نشان داد، پلی‌اتیلن سنتزشده دارای گره‌خوردگی کم است. کاهش غلظت و تراکم سطحی مراکز فعال روی کاتالیزگر ناهمگن‌شده موجب کاهش مقدار گره‌خوردگی‌ زنجیرهای پلیمری شد. نتایج آزمون کشش، بهبود خواص مکانیکی نانوکامپوزیت تولیدشده نسبت به پلی‌اتیلن خالص را نشان داد که می‌تواند حاکی از توزیع مناسب نانوذرات سیلیکا در ماتریس پلی‌اتیلن باشد و تصاویر SEM نیز این موضوع را تأیید کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Immobilization of Metallocene Catalyst in Nano-Fumed Silica for Production of Polyethylene in a Disentangled State

نویسندگان [English]

  • Hasan Keshavarz Mirza-Mohamadi
  • Saeid Talebi
  • Mostafa Rezaei
  • Amin Heidari
Department of Polymer Engineering, Faculty of Chemical Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
چکیده [English]

Hypothesis: Production of polyethylene (PE) of a relatively high molecular weight with improved properties and acceptable processability has been allocated to many research efforts. In the slurry polymerization, immobilization of homogeneous metallocene catalyst on a nano-sized support leads to improved mechanical and thermal properties in addition to controlled morphology and appropriate particle size distribution of product. Specific surface area of support particles can be an effective parameter affecting the immobilization process of catalyst and product properties. In this research the main purpose was to produce PE/nanosilica nanocomposite, using an in-situ polymerization technique, in a disentangled state.
Methods: A metallocene catalyst, such as zirconocene dichloride (Cp2ZrCl2), was immobilized on the surface of modified nano-fumed silica particles. Three grades of nano-fumed silica having specific surface areas of 380, 200 and 50 m2/g were used. First the surface of thermally pretreated nanosilica was chemically modified using methylaluminoxane. Then, by adding the catalyst, Cp2ZrCl2, immobilization reaction and activation of the catalyst were performed simultaneously. Finally ethylene polymerization was conducted using the prepared catalyst under the atmospheric pressure of monomer at 30°C.
Findings: The maximum polymerization yield was related to the heterogenized catalyst on nanosilica with a specific surface area of 200 m2/g. The results of solid state drawability and buildup of modulus in time sweep rheometry exhibited that the synthesized polyethylene is in the less entangled state. Reducing the concentration and density of the active sites on the heterogenized catalyst resulted in the reduced number of chain entanglements. Tensile test results showed that nanocomposite samples possess better mechanical properties compared to the pure polyethylene, an indication of appropriate distribution of silica nanoparticles into the polyethylene matrix which was evidenced using SEM images.

کلیدواژه‌ها [English]

  • polyethylene
  • metallocene catalyst
  • immobilization
  • disentangled state
  • nano-fumed silica
  1. Kaminsky W. and Laban A., Metallocene Catalysis, Appl. Catal., 222, 47-61, 2001.
  2. Chanzy H., Day A., and Marchessault R.H., Polymerization on Glass-supported Vanadium Trichloride: Morphology of Nascent Polyethylene, Polymer8, 567-588, 1967.
  3. Rastogi S., Yao Y., Ronca S., Bos J., and van der Eem J., Unprecedented High-modulus High-strength Tapes and Films of Ultrahigh Molecular Weight Polyethylene via Solvent-free Route, Macromolecules44, 5558-5568, 2011.
  4. Kheradmand A., Ramazani A.S.A., Khorasheh F., Baghalha M., and Bahrami H., Effects of Nanographene Oxide as Support on the Product Properties and  Performance of Ziegler-Natta Catalyst in Production of UHMWPE, Polym. Adv. Technol., 26 315-321, 2015.
  5. Jamjah R., Zohuri G.H., Javaheri M., Nekoomanesh M., Ahmadjo S., and Farhadi A., Synthesizing UHMWPE Using Ziegler-Natta Catalyst System of MgCl2 (ethoxide type)/TiCl4/Tri-Isobutylaluminum, Macromol. Symp., 274, 148-153, 2008.
  6. Alt H.G., The Heterogenization of Homogeneous Metallocene Catalysts for Olefin Polymerization, J. Chem. Soc., Dalton Trans., 11, 1703-1710, 1999.
  7. Bashir M.A., Monteil V., Boisson C., and McKenna T.F.L., Avoiding Leaching of Silica Supported Metallocenes in Slurry Phase Ethylene Homopolymerization,  React. Chem. Eng., 2, 521, 2017.
  8. Franceschini, F.C., Tavares, T.T.D., Bianchini D., Alves M. D.M., Ferreira M.L., dos Santos J.H.Z., Characterization and Evaluation of Supported rac-Dimethylsilylenebis(indenyl)Zirconium Dichloride on Ethylene Polymerization, J. Appl. Polym. Sci., 112, 563-571, 2009.
  9. Mortazavi M.M., Ahmadjo S., Dos Santos J.H.Z., Arabi H., Nekoomanesh M., Zohuri G.H., Brambilla R., and Galland G.B., Characterization of MAO-Modified Silicas for Ethylene Polymerization, J. Appl. Polym. Sci, 130, 4568-4575, 2013.
  10. Ahmadjo S., Arabi H., Zohuri G.H., Nejabat G.R., Omidvar M., Ahmadi M., and Mortazavi S.M.M., In Situ Silica Supported Metallocene Catalysts for Ethylene Polymerization, J.  Petroleum. Sci. Technol., 4, 21-29, 2014.
  11. Kaminsky W., New Polymers by Metallocene Catalysis, Macromol. Chem. Phys., 197, 3907-3945, 1996.
  12. Dubois P., Alexandre M., and Jérôme R., April. Polymerization-filled Composites and Nanocomposites by Coordination Catalysis, Macromolecular Symposia, 194, 13-26, 2003.
  13. Alexandre M., Martin E., Dubois P., Garcia-Marti M., and Jérôme R., Use of Metallocenes in the Polymerization-filling Technique with Production of Polyolefin-based Composites, Macromol. Rapid Commun., 21,931-936, 2000.
  14. Alexandre M., Martin E., Dubois P., Marti M.G., and Jérôme R., Polymerization-Filling Technique: An Efficient Way to Improve the Mechanical Properties of Polyethylene Composites, Chem. Mater.13,236-237, 2001.
  15. Ronca S., Forte G., Tjaden H., Yao Y., and Rastogi S., Tailoring Molecular Structure via Nanoparticles for Solvent-free Processing of Ultra-high Molecular Weight Polyethylene Composites, Polymer53, 2897-2907, 2012.
  16. Li W., Guan C., Xu J., Mu J., Gong D., Chen Z.R., and Zhou Q., Disentangled UHMWPE/POSS Nanocomposites Prepared by Ethylene in Situ Polymerization, Polymer55, 1792-1798, 2014.
  17. Gote R.P., Mandal D., Patel K., Chaudhuri K., Vinod C.P., Lele A.K., and Chikkali S.H., Judicious Reduction of Supported Ti Catalyst Enables Access to Disentangled Ultrahigh Molecular Weight Polyethylene, Macromolecules51, 4541-4552, 2018.
  18. Heidari A., Zarghami H., Talebi S., and Rezaei M., A Disentangled State Using TiCl4/MgCl2 Catalyst: A Case Study of Polyethylene, Iran. Polym. J.,  27, 701-708, 2018.
  19. Heidari A., Talebi S., Rezaei M., Keshavarz-Mirzamohamadi H., and Jafariyeh-Yazdi E., In Situ Synthesis of Ultrahigh Molecular Weight Polyethylene/Graphene Oxide Nanocomposite Using the Immobilized Single-Site Catalyst, Polym-Plast. Technol. Eng.57, 1313-1324, 2018.
  20. Aerosil Granulated Fumed Oxides. Evonik Degussa Technical Information, 1341, 2008.
  21. Vansant E.E, Van Der Voort R., and Vrancken K. C., Studies in Surface Science and Catalysis, Characterization  and Chemical Modification of the Silica Surface, 93, Chapts. 2 and 5, Elsevier, 1995.
  22. Chukin G.D. and Apretova A.I., Silica Gel and Aerosil IR Spectra and Atructure, J. Appl. Spectrosc., 50, 418-422, 1989.
  23. Velthoen M.E.Z., Muñoz-Murillo A., Bouhmadi A., Cecius M., Diefenbach S., and Weckhuysen B.M., The Multifaceted Role of Methylaluminoxane in Metallocene-Based Olefin Polymerization Catalysis, Macromolecules, 51, 343-355, 2018.
  24. Launer P.J., Silicone Compounds Register and Review, Petrarch Systems Inc., Bristol, England, 1987.
  25. dos Santos J.H.Z., Krug C., da Rosa M.B., Stedile F.C., Dupont J., and de Camargo Forte M., The Effect of Silica Dehydroxylation Temperature on the Activity of SiO-Supported Zirconocene Catalysts, J. Mol. Catal.,  A: Chem., 139, 199-207, 1999.
  26. Panchenko V.N., Semikolenova N.V., Danilova I.G., Paukshtis E.A., and Zakharov V.A., IRS Study of Ethylene Polymerization Catalyst SiO2/Methylaluminoxane/Zirconocene, J. Mol. Catal.,  A: Chem., 142, 27-37, 1999.
  27. Eilertsen J.L., Rytter E., Ystenes M., In Situ FTIR Spectroscopy during Addition of Trimethylaluminium (TMA) to Methylaluminoxane (MAO) Shows no Formation of MAO–TMA Compounds, Vib. Spectrosc., 24, 257-264, 2000.
  28. Panchenko V.N., Zakharov V.A., and Paukshtis E.A., Study of the Supported Zirconocene Catalysts by Means of UV/Vis and DRIFT Spectroscopy, J. Mol. Catal.,  A: Chem., 240, 33-39, 2005.
  29. Lemstra P.J.,  van Aerle N.A.J.M.,  and Bastiaansen C.W.M., Chain-Extended Polyethylene, Polym. J., 19,85-98, 1987.
  30. Talebi S., Disentangled Polyethylene with Sharp Molar Mass Distribution; Implications for Sintering, PhD Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2008.
  31. Chaichana E., Bunjerd J., and Piyasan P., Effect of Nano-SiO2 Particle Size on the Formation of LLDPE/SiO2 Nanocomposite Synthesized via the in Situ Polymerization with Metallocene Catalyst, Chem. Eng.  Sci., 62, 899-905, 2007.