اثر گرمایش ریزموج بر ساختار ظرفی رشته‌های پلی استر

صدیقه بهرامی **، مصطفی فیروزی، محمد شریف، جلال بهرامی

1-اصفهان، دانشگاه صنعتی اصفهان، دانشکده نساجی، کدپستی 8111695889، 2-اصفهان، مرکز آموزش عالی فنی شهید محسن مهاجر، صندوق پستی 8111696140

دریافت: ۲۸/۰۷/۰۹، پذیرش: ۲۸/۰۷/۰۹

چکیده

صرف هوا در زمان و هنگامی از نیازهای فرایند برای مدت نساجی است و با پکلگری فون و مکان معکوس کمتر را در آن قرار می‌دهند. این منطقه نساجی، محصول می‌شود. در زمان استفاده از گرمایش ریزموج در برخی از فرایندهای نساجی، طبیعت خشک کردن و برخورد ریزموج در زمان استفاده از تنش‌های جهت نهایی شکننده و کمک به جهت نهایی پس از قرار گرفتن در معرض ریزموج است. تغییر ساختار فیزیکی با نگر خواص فیزیکی، مقدار و دمای سطح و در نتیجه بخشی از این اثر همانند ورودی است. ساختار رشته‌های پلی امرسون از این ریزموج را به وجود می‌آورد و ماهیت و تغییر تغییرات در اثر گرمایش ریزموج شکل محسوس نمی‌کند، ولی در مورد رشته‌های نیمه جهت پایه ساختار فیزیکی به دلیل قرار گرفتن در آب جوش که لازم به عملیات ریزموج است، تغییر می‌کند.

واژه‌های کلیدی: ساختار ظرفی، پلی امرسون بردار، جمع شدن، ریزموج، رشته

Key Words: fine structure, polyethylene terephthalate, shrinkage, microwave, filament

مقدمه

مولد سبز می‌گویند که قابلیت جذب ریزموج را دارند و لایه تلف کنند به نامیده مواد و شوند. مولکول‌هایی پیک ماده تلف کننده مانند آب در فرآیندهای تابیت ریزموج می‌توانند به ارتعاش در آید. این عمل باعث ایجاد ذرات کریستالی در می‌شود. قابلیت پک ماده برای جذب تابیت بسیاری به خواص مولکولی فیزیکی مولکول‌های آت و پارامترهای میدان مغناطیسی دارد [۶]. در مجاورت یک میدان الکترو مغناطیسی با

ناحیه ریزموج دارای فرکانس بالا و طول موج کوتاه (m) ۱-۹۱۸۱ (۱-۹۱۸۱) بین امواج رادیویی و امواج زیر قرمز در طیف الکترو مغناطیس قرار

گرفته است [۱۳].

فقطی بین و چرخش دو قطعی دو مکانیزم اصلی تولید گرمایی در ناحیه ریزموج این دو مکانیزم هست و می‌دهد که یک میدان فیزیکی موجود در یک محلول مواد شیمیایی به ظرفیت یک ترکیب الکترو مغناطیسی که کننده می‌کنند

و مکانیزم گرمایش در اثر چرخش دو قطعی بستگی به وجود

*بخش از این مقاله به صورت متن الکترونی در چاپ سایت کنگره ملی مهندسی نساجی ایران، سال 81، دانشگاه، برد ارائه شده است.

**مسؤل مکانیزم، پیام نگار: Borhani@cc.iut.ac.ir

\(m \)۱-۹۱۸۱\((m) \)۱-۹۱۸۱
شکل 3- نمودار تغییرات نظر رشتی‌ها در برای زمان گرمایش برزیوم در نمونه‌های بلی استر: (* نمای جهت یافته و (■) کامل جهت یافته.

استحکام و اپتیک و بار برای مسئولیت نمونه‌ها، بر اساس استاندارد Zwick Material Profing و با استفاده از دستگاه ASTM D 790 و برای برداشت نمونه‌ها و بررسی نمونه‌ها، برای برداشت ن몬ه‌ها و بررسی نمونه‌ها، برای برداشت نمونه‌ها و بررسی نمونه‌ها، برای برداش
نتایج و بحث

نتایج حاصل از این آزمایش در شکل‌های 2 و 3 نشان داده می‌شود. زمان صفر خواص اندازه‌گیری شده نمودار زمانی (اختیار) واکنش مدار نشان دهنده خواص مربوط به نمونه‌ای است که فقط در آب جوش فرآورده، و با در معرض ریزوموج واقع شده است.

قطر رشته‌ها قبل و بعد از عمل آوری با ریزوموج برای زمان‌های مختلف اندازه‌گیری شد. نتایج حاصل از تغییرات قطر نمونه‌ها عمل آوری شده با گرماپیش و ریزوموج در شکل 2 نشان داده شده است. ملاحظه می‌شود که فقط رشته‌های POY داده شده است. در محدوده آماده‌سازی که به مدت 1 دقیقه تحت گرماپیش و ریزوموج قرار گرفته است به دیفرانسیل نسبت به نمونه خام آراسته می‌باشد. و در نمونه‌هایی که برای زمان‌های بالا در معرض گرماپیش و ریزوموج قرار داشته، تغییر تاندونی در قطر آنها نسبت به نمونه زمانی به دو دقیقه مشاهده نمی‌شود. نمونه‌ها ملاحظاً نسبت به نمونه قبل از گرماپیش و پس از آن اندازه‌گیری شد. شکل 3 نتایج مربوط به ظرافت رشته‌ها را نشان می‌دهد.

شکل 4: نمودار تغییرات استحکام رشته‌ها در برابر زمان گرماپیش ریزوموج در نمونه‌های بی‌پلی استر: (■) نیمه جهت یافته و () کاملاً جهت یافته.

CI = \(\frac{A_{1600}}{A_{1410}} \).

که در این معادله \(A_{1600} \) و \(A_{1410} \) به ترتیب ضریب شدت جذب در 1600 و 1410 cm\(^{-1} \) است.

تجزیه شیمیایی رشته‌ها

برای تجزیه شیمیایی رشته‌ها در جواهر متال آلی، رشته‌ها به طول‌های مختلف پیدا می‌شوند و در طرف سرتیه دارای بیش از 400 درجه سانتی‌گراد قرار گرفتند. و عمل تجزیه در دمای 400 درجه سانتی‌گراد به مدت 20 دقیقه برای هر ترکیب رشته‌های POY ویاً مدت 30 دقیقه برای رشته‌های FOY انجام گرفته. پس از این عمل تجزیه نمونه‌ها کاملاً شسته و حسکش شده‌اند و سپس، مقطع طولی آنها به کمک میکروسکوپ بی‌لی نمودار مشاهده شد.

شکل 5: نمودار تغییرات طول تا پارامتر رشته‌ها در برابر زمان گرماپیش ریزوموج در نمونه‌های بی‌پلی استر: (■) نیمه جهت یافته و () کاملاً جهت یافته.

سال پادرنهم شماره جهانی 1381
شکل 1- منحنی پرتو-پروتو ایکس رشته‌های POY فیلم قبل از گرماشی و ریزوموج (ب) بعد از فرآوری گرماشی در آب جوش و (چ) بعد از 8 دقیقه گرماشی ریزوموج.

شکل 2- منحنی پرتو-پروتو ایکس رشته‌های POY فیلم قبل از گرماشی و ریزوموج (ب) بعد از فرآوری گرماشی در آب جوش و (چ) بعد از 8 دقیقه گرماشی ریزوموج.

نمودنیامانهای عمل آوری شده یا گرماشی و ریزوموج نسبت به نمونه‌های شده به مقدار زیادی کاهش یافته و از استحکام نمونه‌ها نسبت به نمونه‌های شده در آب جوش تغییر محوسی نداشته است. نتایج حاصل از اندام‌گیری در مورد نمونه‌های کاریک عدل تر استحکام و از اندام‌گیری در مورد نمونه‌ها قبل و بعد از عمل آوری یا گرماشی و ریزوموج است.

و در شکل‌های ۳ و ۴ منحنی‌های حاصل از پرتو پرتو ایکس رشته‌های POY، POY مدت 8 دقیقه و بعد از گرماشی و ریزوموج به آب جوش علت زیادی و وجود پیش‌های در زراییار پرتو ۲۰، ۱۰، ۵۰ و ۴۰ درجه در مدت نمونه‌های عمل آوری شده پرتو مشاهده می‌شود که به توجه به جمع نشانگر رشته‌های POY در آب جوش به نوبه می‌شود.

این جمع شاخص در مورد رشته‌های POY بسیار نتیجه‌گذار است.

سطح مقیاس طولی نمونه‌های پیش‌پرتوی عامل آوری عمل آوری دارد و عمل آوری شده در آب جوش و گرماشی و ریزوموج به کمک ماکروسکوپیک الکترونی مورد تحقیق قرار گرفت. با توجه به این تحقیق ملاحظه می‌شود که در شکل نسبی پیش‌گیری زیادی سایر فرآوری‌ها به قطع و قبل از گرماشی و ریزوموج قبل از فرآوری گرماشی در آب جوش فرآوری‌های است، و پس از گرماشی و ریزوموج نتیجه‌گذار است. شکل‌های ۳ و ۴ به ترتیب نمودار تغییر در استحکام و از اندام‌گیری پرتو-پرتو ایکس رشته‌ها را نشان می‌دهد. ملاحظه می‌شود که از استحکام
جدول 2: مشخصات بلورینگی فیت‌های POY و FOY با استفاده از طیف FTIR

<table>
<thead>
<tr>
<th>عمل آوری: برای ریزوموج (8 دقیقه)</th>
<th>عمل آوری: برای ریزوموج (1 دقیقه)</th>
<th>ریزوموج</th>
<th>نمونه</th>
<th>خاک</th>
<th>رنگ‌نامه</th>
</tr>
</thead>
<tbody>
<tr>
<td>قبل از گرفتن</td>
<td>پس از گرفتن</td>
<td>قبل از گرفتن</td>
<td>پس از گرفتن</td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>122</td>
<td>122</td>
<td>122</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شاخص بلورینگی نمونه‌ها با استفاده از طیف FTIR قبل و بعد از گرفتن ریزوموج نشان دهنده تغییرات فیت‌های POY و FOY است. شاخص بلورینگی رنگ‌نامه‌ای پس از گرفتن ریزوموج به مدت 8 دقیقه نشان دهنده نسبت به نمونه‌های مورد بررسی می‌باشد. شاخص بلورینگی نمونه پس از گرفتن در آب جوش یا قبل از گرفتن ریزوموج نشان دهنده نسبت به نمونه‌های عمل آوری شده است. نمونه‌هایی از مشاهده کرده‌اند که با گرفتن ریزوموج شاخص بلورینگی رنگ‌نامه‌ای قبل از گرفتن در آب جوش یا قبل از گرفتن ریزوموج تغییر کرده‌اند.

جدول 3: تغییرات مشخصات رنگ‌نامه‌های POY و FG

روش جبران الگوی سه‌گانه است. نمونه می‌دهد. تاپی حاصل بانکر کاهش ضخامت رنگ‌نامه‌های فیت‌های POY و FG از گرفتن ریزوموج به مدت 8 دقیقه است. نمونه‌هایی از مشاهده شده که با گرفتن ریزوموج تغییری در نتیجه نداشت به‌طور کلی.

شکل 9: رنگ‌نامه‌ای آبین دار شده: (الف) قبل از گرفتن ریزوموج، (ب) پس از گرفتن در آب جوش و (ج) بعد از گرفتن ریزوموج.
جدول ۳ ضریب شکست مقاومت حالت‌های POY

<table>
<thead>
<tr>
<th>عمل آوری با POY</th>
<th>عمل آوری با ریزوموج (دبیمه)</th>
<th>عمل آوری با ریزوموج (دبیسه)</th>
<th>عمل آوری با آب</th>
<th>حاوی</th>
<th>نمونه</th>
<th>رنگشده</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰.۳۲</td>
<td>۰.۳۲۲</td>
<td>۰.۲۲۹</td>
<td>۰.۲۹۹</td>
<td>۰.۳۴</td>
<td>۰.۳۴</td>
<td>۰.۳۴</td>
</tr>
</tbody>
</table>

در درون رنگ‌های POY، به دلیل نیاز به اتصال سمی یا اتصال با نیزه یا اتصال با نیزه، برای رنگ‌های POY، استفاده از ماده‌هایی می‌باشد که کاملاً شبیه شکست مقاومت الیاف بود همیشه به صورت نیزه یا اتصال با نیزه به دلیل حمایت مالی در اجرای این طرح پژوهش قدردانی می‌شود.

مراجع

3. Grant E.; Microwave Industrial; Scientific and Medical Application. Artech House, Boston, London.

12. برده سلمان محمدرضا, امیرشافری مداهن, "اثر امواج مکروویو بر روی سوختن پنبه در عملية پینیت" رئگوژى و رئگوژی با استفاده از رئگهای راکتیو" مجموعه مقالات کنفرانس علوم و تکنولوژی نانو، صفحه 61 اردیبهشت 1379.

13. پردازی شده, حفیظت کرم محمد, "نگرش بر ساختار فیلیت ایفا" مجله بالی استر، جمهوری علوم و تکنولوژی پلیمر سال نهم، شماره چهارم، 1379.

14. حفیظت کرم محمد، "پیشرفت‌های در صنعت تولید الاف بر ساحل" مجله علوم و تکنولوژي پلیمر، سال سوم، شماره چهارم، صفحه 292، بهمن 1369.

