بررسی اثر پرتو الکترونی بر چند مخلوط پلی اتیلن

Investigation of the Effect of Electron Beam on Various Polyethylene Blends

چکیده

بای توجه به استفاده روز افزون از پرتوهای الکترونی در صنایع پلیمری در زمینه هایی نظیر تغییر مکانیکی محصولات ویکار مصرف پژوهشی تولید کالی لوله و محصولات منقش شونده اثر این پرتو بر چند مخلوط پلی اتیلن بررسی شد. نتایج نشان می‌دهد که افزایش شار، چگالی پیوندهای عرضی در محصولات فاقد جرقه، تغییرات قابل توجهی در خواص نمونه‌ها نظیر دمای ذوب، درصد بلوئینی، دما تخریب و خواص نیزی و مکانیکی ایجاد می‌شود. در ضمن، نمونه‌ها در دمای بالا جای خود می‌گیرند. این افزایش چگالی پیوندهای عرضی در پلی‌های دارای کربن نوع سوم مشاهده شد. استفاده از مواد افزودنی تأثیر مناسبی داشته بازده تولید پیوندهای عرضی را افزایش می‌دهد. این دو کمپیوتر شامل مشکلات ویکاری هوا را در دمای نمونه‌ها نظیر دمای ذوب، درصد بلوئینی، دما تخریب و خواص نیزی و مکانیکی ایجاد می‌شود. در ضمن، نمونه‌ها در دمای بالا جای خود می‌گیرند. این افزایش چگالی پیوندهای عرضی در پلی‌های دارای کربن نوع سوم مشاهده شد. استفاده از مواد افزودنی تأثیر مناسبی داشته بازであنرال پیوندهای عرضی را افزایش می‌دهد. این دو کمپیوتر شامل مشکلات ویکاری هوا را در دمای نمونه‌ها N

مقدمه

است. در این میان با توجه به پیشرفت‌های حاصل در زمینه ساخت‌چیزات تولید کننده پرتوهای الکترونی با قدرت و شار منعوت و ایمنی بودن این نمونه نسبت به فرانل تولیدی پرتو گاما، این تجهیزات جایگاه ویژه‌ای در صنایع پلیمری به خود اختصاص داده اند. (3) از زمره‌های اینبرین

Key Words

polyethylene blends, electron beam, HDPE, EVA, LDPE

پژوهشگاه پلیمر، سال شانزدهم، شماره 2، صفحه 1-30، 1385
ISSN : 1016-3255

*رساله‌ساز که پرتوهای بر این کنند به عنوان منابع انرژی شناخته شده در عرصه‌های مختلف علمی و صنعتی به کار گرفته شده‌اند. (1،2) تحقیقات گسترده‌ای پردازان بررسی اثر بی‌پرتو با پلی‌های مختلف بی‌پرتو در اولین بار دو برابر اجرا بود. این پرتو یا پلی‌های مختلف بی‌پرتو را در اولین بار دو برابر اجرا بود. این پرتو یا پلی‌های مختلف بی‌پرتو را در اولین بار دو برابر اجرا بود. این پرتو یا پلی‌های مختلف بی‌پرتو را در اولین بار دو برابر اجرا بود. این پرتو یا پلی‌های مختلف بی‌پرتو را در اولین بار دو برابر اجرا بود. این پرتو یا پلی‌های مختلف بی‌پرتو را در اولین بار دو برابر اجرا بود. این پرتو یا پلی‌های مختلف بی‌پرتو را در اولین بار دو برابر اجرا بود. این پرتو یا پلی‌های مختلف بی‌پرتو را در اولین بار دو برابر اجرا بود. این پرتو یا پلی‌های مختلف بی‌پرتو را در اولین بار دو برابر اجرا بود. این پرتو یا پلی‌های مختلف بی‌پرتو را در اولین بار دو برابر اجرا بود. این پرتو یا پلی‌های مختلف بی‌پرتو را در اولین بار دو برابر اجرا بود. این پرتو یا پلی‌های مختلف بی‌پرتو را در اولین بار دو برابر اجرا بود. این پرتو یا پلی‌های مختلف بی‌پرتو را در اولین بار دو برابر اجرا بود. این پرتو یا پلی‌های مختلف بی‌پرتو را در اولین بار دو برابر اجرا بود. این پرتو یا پلی‌های مختلف بی‌پرتو را در اولین بار دو برابر اجرا بود. این پرتو یا پلی‌های مختلف بی‌پرتو را در اولین بار دو برابر اجرا بود. این پرتو یا پلی‌های مختلف بی‌پرتو را در اولین بار دو برابر اجرا بود. این پرتو یا پلی‌های مختلف بی‌پرتو را در اولین بار دو برابر اجرا بود. این پرتو یا پلی‌های مختلف بی‌پرتو را در اولین بار دو برابر اجرا بود. این پرتو یا پلی‌های مختلف بی‌پرتو را در اولین بار دو برابر اجرا B
<table>
<thead>
<tr>
<th>دمای ذوب (°C)</th>
<th>MFI (g/10 min)</th>
<th>جرم حجمی (g/cm³)</th>
<th>تولید کننده</th>
<th>نام تجاری</th>
<th>نام ماده</th>
<th>ردیف</th>
</tr>
</thead>
<tbody>
<tr>
<td>152/09</td>
<td>07</td>
<td>0,92</td>
<td>پتروشیمی بندر امام</td>
<td>LH2005</td>
<td>LDPE</td>
<td>1</td>
</tr>
<tr>
<td>169/01</td>
<td>25</td>
<td>0,93</td>
<td>پتروشیمی اراک</td>
<td>HD3800-UA</td>
<td>HDPE</td>
<td>2</td>
</tr>
<tr>
<td>177/01</td>
<td>21</td>
<td>0,93</td>
<td>پتروشیمی اراک</td>
<td>LLD311-AA</td>
<td>LLDPE</td>
<td>3</td>
</tr>
<tr>
<td>07/01</td>
<td>1/2</td>
<td>0,94</td>
<td>Exxon Chemical</td>
<td>Escorene Ultra</td>
<td>EVA</td>
<td>4</td>
</tr>
<tr>
<td>07</td>
<td>___</td>
<td>1/2</td>
<td>Merck</td>
<td>___</td>
<td>DCP</td>
<td>5</td>
</tr>
<tr>
<td>162</td>
<td>___</td>
<td>1/2</td>
<td>Merck</td>
<td>___</td>
<td>متانکریک اسید</td>
<td>6</td>
</tr>
<tr>
<td>___</td>
<td>1/8</td>
<td>کرین بلک اهواز</td>
<td>300-370</td>
<td>دوده</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

جدول 1- مشخصات مواد مصرف شده.

پردازشگی (paking factor) و چگالی مواد اولیه، مقدار هر ماده با توجه به هشت فرمولیندی ارائه شده در جدول 2 توزیع شد. فرمولیندی بر اساس اطلاعات حاصل از تجربی شناخت و شناسایی نام نمونه تجاري. تجربه انتخاب شده اند.

پردازشگی مولکولی که از این فناوری بهره می‌گیرند شامل تولید کابل و قطعات متفاوت شونده کریک است. در این پژوهش، به کمک تجربه و شناسایی چند نمونه تجاري، سه تکریک پلیمر پایه انتخاب شد و در ادامه اثر مواد افزودنی و اثر عامل پرتو بر آنها ارزیابی شده است.

تجربی

مواد

مشخصات مواد مصرف شده در جدول 1 مشخص شده است.

دستگاه‌ها

در این پژوهش، از مخلوط کن داخیل هکه مدل RC90 دستگاه Rhodotron TTV200 ساخت شرکت ساخت هکه از ساخته IBA است. در این ساخت STA-TG دستگاه است. Instron دستگاه دستگاه انگلیسی Polymer Lab از شرکت Zwick است و Extrusion Plastometer مدل (MFI) ز Wick همچنین ساخته شده است.

روش‌ها

در این مرحله با توجه به حجم مخلوط کن داخیل و نیز در نظر گرفتن
جدول 2- ترکیب درصد فرمولبندی‌های ساخته شده.

<table>
<thead>
<tr>
<th>CB</th>
<th>MAA</th>
<th>DCP</th>
<th>LLDPE</th>
<th>HDPE</th>
<th>LDPE</th>
<th>EVA</th>
<th>نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>215</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>70</td>
<td>30</td>
<td>30</td>
<td>ISI1</td>
</tr>
<tr>
<td>215</td>
<td>—</td>
<td>2</td>
<td>60</td>
<td>—</td>
<td>70</td>
<td>30</td>
<td>ISI12</td>
</tr>
<tr>
<td>215</td>
<td>—</td>
<td>—</td>
<td>40</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>ISI17</td>
</tr>
<tr>
<td>215</td>
<td>2</td>
<td>—</td>
<td>40</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>ISI17</td>
</tr>
<tr>
<td>215</td>
<td>—</td>
<td>—</td>
<td>40</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>ISI17</td>
</tr>
<tr>
<td>215</td>
<td>2</td>
<td>—</td>
<td>40</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>ISI17</td>
</tr>
<tr>
<td>215</td>
<td>—</td>
<td>—</td>
<td>40</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>ISI17</td>
</tr>
</tbody>
</table>

(1) تنانکلیپ اسید و (2) دوده.

شده و به هر دسته شاری معادل یکی از شرایط یک، دو، سه، هفت و ده گرم شن سخت‌انداز در دو مدل 24 ساعت و 180، 240، 360، 480 و 960 کیلوگرم به سه مدل سخت‌انداز و دو مدل LDPE نمونه‌ها داده شدند.

آزمون‌ها

متران زل شدن نمونه‌ها بر اساس استاندارد ASTM D 7942 معین شد. آزمون کشش به وسیله دستگاه کشش و بر اساس استاندارد ASTM D 3182 انجام شد. وزن بکار رفته برای مواد اولیه 216 کیلوگرم و در مورد ASTM D 3820 معیار سخت‌انداز در مقیاس شوره استاندارد ASTM D 2240 انجام شد.

نتایج و بحث

شکل 1 محتوای زل نمونه‌ها را بر حسب شار اعمال شده با آن برای توجه به این شکل نشان می‌دهد که در همه مواد در فاز اولیه شار محتوای زل آزاد به کافی که امر حاکی از افزایش چگالی پیوندهای عرضی است. در مورد نمونه‌های دایره‌ای دیگر نمایان می‌گردد که قابل توجه تجزیه و منجر به این کربه ای شدن نمونه‌ها شده است.

[شکل 1: محتوای زل نمونه‌ها بر حسب شار اعمال شده.]

[جدول 2: ترکیب درصد فرمولبندی‌های ساخته شده.]

[جدول 3: مقایسه نمونه‌ها.]
شکل 4 - مقدار نمونه های MFI در 200 кГی در دو آزمایش: ۱) است. 

این دو نمونه را با هم می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت می‌توان در هر دو حالت آزمایش و در هر دو حالت MFI در نمونه های ۱ و ۳ و ۲ با حسب شار اعمال شده.

شکل 3- دمای ذوب نمونه ها با حسب شار اعمال شده.
نمونه‌ها این‌ها اندازه‌گیری می‌شود. این‌ها در مورد سه‌گانه نمودار گزارش کاهش می‌یابد. نتایج نشان‌دهنده کارایی تأثیر افزایش سرعت
تولید پروتون‌های عرضی است.
در شرایط بالا، استحکام کششی و ازدیاد طول تار ورگی نمونه‌ها 
دست‌کاری نوسانات زیادی می‌شود. پایین‌ترکم‌تر کریک هنوز توجه
علی‌القلهی در مورد این اتفاقات وجود ندارد، این اتفاقات
بی‌ثباتی پروتون‌های مسائل ناخواسته و یک‌پاره هموزم
گر این نوعه می‌کند که هر کدام می‌تواند خاصیت‌های ویژه‌ای 
نمونه‌ها به شکل منطقی تحت تاثیر قرار دهید.

1- بر اثر پروتون‌های چگالی پروتون‌های عرضی در نواحی پی شکل و
نواحی بین فاصله‌ای می‌رود. البته این اتفاقات استحکام کششی افزایش
می‌یابد. اما در درصد زیادی پروتون‌های عرضی بعلت سفت شدن
ماته، استحکام کششی کاهش می‌یابد.[7]

2- در شرایط زیاد اثر اعمال پروتون به نمونه‌ها، ماده‌های متحرک و
نواحی بین فاصله‌ای می‌رود. البته این اتفاقات استحکام کششی افزایش
می‌یابد. اما در درصد زیادی پروتون‌های عرضی بعلت سفت شدن
ماته، استحکام کششی کاهش می‌یابد.[7]

3- در شرایط زیاد اثر اعمال پروتون به نمونه‌ها، ماده‌های متحرک و
نواحی بین فاصله‌ای می‌رود. البته این اتفاقات استحکام کششی افزایش
می‌یابد. اما در درصد زیادی پروتون‌های عرضی بعلت سفت شدن
ماته، استحکام کششی کاهش می‌یابد.[7]

4- در شرایط زیاد اثر اعمال پروتون به نمونه‌ها، ماده‌های متحرک و
نواحی بین فاصله‌ای می‌رود. البته این اتفاقات استحکام کششی افزایش
می‌یابد. اما در درصد زیادی پروتون‌های عرضی بعلت سفت شدن
ماته، استحکام کششی کاهش می‌یابد.[7]

5- در شرایط زیاد اثر اعمال پروتون به نمونه‌ها، ماده‌های متحرک و
نواحی بین فاصله‌ای می‌رود. البته این اتفاقات استحکام کششی افزایش
می‌یابد. اما در درصد زیادی پروتون‌های عرضی بعلت سفت شدن
ماته، استحکام کششی کاهش می‌یابد.[7]

6- در شرایط زیاد اثر اعمال پروتون به نمونه‌ها، ماده‌های متحرک و
نواحی بین فاصله‌ای می‌رود. البته این اتفاقات استحکام کششی افزایش
می‌یابد. اما در درصد زیادی پروتون‌های عرضی بعلت سفت شدن
ماته، استحکام کششی کاهش می‌یابد.[7]

7- در شرایط زیاد اثر اعمال پروتون به نمونه‌ها، ماده‌های متحرک و
نواحی بین فاصله‌ای می‌رود. البته این اتفاقات استحکام کششی افزایش
می‌یابد. اما در درصد زیادی پروتون‌های عرضی بعلت سفت شدن
ماته، استحکام کششی کاهش می‌یابد.[7]

8- در شرایط زیاد اثر اعمال پروتون به نمونه‌ها، ماده‌های متحرک و
نواحی بین فاصله‌ای می‌رود. البته این اتفاقات استحکام کششی افزایش
می‌یابد. اما در درصد زیادی پروتون‌های عرضی بعلت سفت شدن
ماته، استحکام کششی کاهش می‌یابد.[7]

9- در شرایط زیاد اثر اعمال پروتون به نمونه‌ها، ماده‌های متحرک و
نواحی بین فاصله‌ای می‌رود. البته این اتفاقات استحکام کششی افزایش
می‌یابد. اما در درصد زیادی پروتون‌های عرضی بعلت سفت شدن
ماته، استحکام کششی کاهش می‌یابد.[7]

10- در شرایط زیاد اثر اعمال پروتون به نمونه‌ها، ماده‌های متحرک و
نواحی بین فاصله‌ای می‌رود. البته این اتفاقات استحکام کششی افزایش
می‌یابد. اما در درصد زیادی پروتون‌های عرضی بعلت سفت شدن
ماته، استحکام کششی کاهش می‌یابد.[7]

11- در شرایط زیاد اثر اعمال پروتون به نمونه‌ها، ماده‌های متحرک و
نواحی بین فاصله‌ای می‌رود. البته این اتفاقات استحکام کششی افزایش
می‌یابد. اما در درصد زیادی پروتون‌های عرضی بعلت سفت شدن
ماته، استحکام کششی کاهش می‌یابد.[7]

12- در شرایط زیاد اثر اعمال پروتون به نمونه‌ها، ماده‌های متحرک و
نواحی بین فاصله‌ای می‌رود. البته این اتفاقات استحکام کششی افزایش
می‌یابد. اما در درصد زیادی پروتون‌های عرضی بعلت سفت شدن
ماته، استحکام کششی کاهش می‌یابد.[7]
جدول ۳- مدول نمونه‌ها در °C ۱۰ بالاتر از دمای ذوب آنها بر حسب شار اعمال شده.

<table>
<thead>
<tr>
<th>IS33</th>
<th>IS32</th>
<th>IS31</th>
<th>IS33</th>
<th>IS32</th>
<th>IS31</th>
<th>IS32</th>
<th>IS31</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
</tr>
<tr>
<td>۰/۰۶</td>
<td>۰/۰۶</td>
<td>۰/۰۶</td>
<td>۰/۰۶</td>
<td>۰/۰۶</td>
<td>۰/۰۶</td>
<td>۰/۰۶</td>
<td>۰/۰۶</td>
</tr>
<tr>
<td>۰/۰۹</td>
<td>۰/۰۹</td>
<td>۰/۰۹</td>
<td>۰/۰۹</td>
<td>۰/۰۹</td>
<td>۰/۰۹</td>
<td>۰/۰۹</td>
<td>۰/۰۹</td>
</tr>
<tr>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
</tr>
<tr>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
</tr>
<tr>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
</tr>
<tr>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
</tr>
<tr>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
</tr>
</tbody>
</table>

کاهش می‌هد [۱۰].

۳- پریتوپرده‌ای، زنجیره‌ای تحت کشت و شاخه‌های فرعی قطع

۳- بیانکاله‌ای تولیده با اکسیژن حل شده در فاز بی‌شکل و اکتشاف داده و تخریب اکسانشی زنجیره‌های شروع می‌شود و در تخلیه ساختارهای شبکه ای یک‌گرز به شبکه‌های کره‌ای تبدیل می‌شوند [۷۸].

۵- وجود مواد افزوده گاهی موجب می‌شود که این مواد نقص هسته‌سازی را به‌های کی‌ویکند و در تخلیه درصد برلارگی را افزایش دهند [۱۱]. اما گاهی ممکن است مواد افزوده مثل تنر کنده داخلی باشد و درصد برلارگی را کاهش دهد [۹].

۶- در حین پرتوپرده، علاوه بر واکنش های شبکه‌ای شدن، واکنش‌های تخریب زنجیره نیز بطور همزمان شروع می‌شوند و بسته به اینکه کدام واکنش برتر بیشتر پلتری شبکه‌ای یا تخریب می‌شود بنابراین، در شارهای بالا، احتمال بیشتر شدن واکنش‌های پایه شدن زنجیره‌های افزایش می‌یابد.

نتیجه‌گیری

با افزایش شار، جیگال پیوندهای عرضی در نمونه‌ها افزایش می‌یابد. پیل ایلول‌های شاخه‌ای با EVA به علت داشتن کربن نوع هموف و فاز DCP به شکل بیشتر، قابلیت شبکه‌های شدن زیادتری دارند. استفاده از EVA به علت ایجاد محدودیت در فراوری آمرور کاری مناسب نیست، اما
متاکنلیک اسید در شارهای کم مناسب است. سختی نمونه‌ها بر اثر اعمال شار تغییر محسوسی نمی‌کند. نمونه‌های طی پرتوهای کم می‌شود و عملکرد نمونه‌ها قابلیت جاری مدتی درد می‌دهند و در دمای بالا به صورت استمرر عمل می‌کنند. دماه ذوب ترکیب پلورین و پلورینگی بر اثر پرتوهای کاهش می‌یابد و دمای تحقیب افزایش می‌یابد.

مراجع
1. پریمانیور پری، مبانی فیزیک پرتوها و برنامه‌ریزی، مؤسسه خدمات فرهنگی - انتشاراتی، تهران، صفحه 1370، 2001.