بهبود چسبندگی پوشش اپوکسی روی زیرآیند آلومینیم
با استفاده از ترکیبات سیلان

Adhesion Improvement of Epoxy Coating on Aluminium Substrate Using an Amino-Silane Compound

چکیده

در این پژوهش، با استفاده از ترکیب آمینو پرپیل رتر متکسی سیلان به عنوان بهبود دهنده چسبندگی پوشش آلومینیم با عامل پوشش اپوکسی بررسی شد. همچنین از ابزارهای رویه مدل‌سازی، روش آزمایش، قابلیت ترکیب سطح نمونه‌های آلومینیم دهده به سیلان و با طرف سطح زیر، مدل‌سازی انتقال عبور به کش‌های شیمیایی بین لایه سیلان و سطح آلومینیم بررسی گردید. استحکام چسبندگی در دو حالت خشک و باریکات با استفاده از روشهای برخی منطقه‌ای و جداسازی کلش بررسی و با داشتن کمیت‌های کریمات دار شده مقایسه گردید. نتایج اندازه‌گیری کش‌های سطحی از طریق تیکیت سطح است نتایج نشان می‌دهد که مدل‌سازی دو روش به صورت متنوع و قابلیت ترکیب سطح نمونه‌های آلومینیم مشابه‌ترین در روش باریکاتی در فاصله 1.00 تا 1.70 mm می‌باشد. به‌طور کلی، نتایج نشان می‌دهد که روش‌های ارائه شده می‌توانند با بهبود قابلیت ترکیب سطحی و نتایج نشان می‌دهد که مدل‌سازی دو روش به صورت متنوع و قابلیت ترکیب سطح نمونه‌های آلومینیم مشابه‌ترین در روش باریکاتی در فاصله 1.00 تا 1.70 mm می‌باشد. به‌طور کلی، نتایج نشان می‌دهد که روش‌های ارائه شده می‌توانند با بهبود قابلیت ترکیب سطحی و نتایج نشان می‌دهد که مدل‌سازی دو روش به صورت متنوع و قابلیت ترکیب سطح نمونه‌های آلومینیم مشابه‌ترین در روش باریکاتی در فاصله 1.00 تا 1.70 mm می‌باشد. به‌طور کلی، نتایج نشان می‌دهد که روش‌های ارائه شده می‌توانند با بهبود قابلیت ترکیب سطحی و نتایج نشان می‌دهد که مدل‌سازی دو روش به صورت متنوع و قابلیت ترکیب سطح نمونه‌های آلومینیم مشابه‌ترین در روش باریکاتی در فاصله 1.00 تا 1.70 mm می‌باشد. به‌طور کلی، نتایج نشان می‌دهد که روش‌های ارائه شده می‌توانند با بهبود قابلیت ترکیب سطحی و نتایج نشان می‌دهد که مدل‌سازی دو روش به صورت متنوع و قابلیت ترکیب سطح نمونه‌های آلومینیم مشابه‌ترین در روش باریکاتی در فاصله 1.00 تا 1.70 mm می‌باشد. به‌طور کلی، نتایج نشان می‌دهد که روش‌های ارائه شده می‌توانند با بهبود قابلیت ترکیب سطحی و نتایج نشان می‌دهد که مدل‌سازی دو روش به صورت متنوع و قابلیت ترکیب سطح نمونه‌های آلومینیم مشابه‌ترین در روش باریکاتی در فاصله 1.00 تا 1.70 mm می‌باشد. به‌طور کلی، نتایج نشان می‌دهد که روش‌های ارائه شده می‌توانند با بهبود قابلیت ترکیب سطحی و نتایج نشان می‌دهد که مدل‌سازی دو روش به صورت متنوع و قابلیت ترکیب سطح نمونه‌های آلومینیم مشابه‌ترین در روش باریکاتی در فاصله 1.00 تا 1.70 mm می‌باشد. به‌طور کلی، نتایج نشان می‌دهد که روش‌های ارائه شده می‌توانند با بهبود قابلیت ترکیب سطحی و نتایج نشان می‌دهد که مدل‌سازی دو روش به صورت متنوع و قابلیت ترکیب سطح نمونه‌های آلومینیم مشابه‌ترین در روش باریکاتی در فاصله 1.00 تا 1.70 mm می‌باشد. به‌طور کلی، نتایج نشان می‌دهد که روش‌های ارائه شده می‌توانند با بهبود قابلیت ترکیب سطحی و نتایج نشان می‌دهد که مدل‌سازی دو روش به صورت متنوع و قابلیت ترکیب سطح نمونه‌های آلومینیم مشابه‌ترین در روش باریکاتی در فاصله 1.00 تا 1.70 mm می‌باشد. به‌طور کلی، نتایج نشان می‌دهد که روش‌های ارائه شده می‌توانند با بهبود قابلیت ترکیب سطحی و نتایج نشان می‌دهد که مدل‌سازی دو روش به صورت متنوع و قابلیت ترکیب سطح نمونه‌های آلومینیم مشابه‌ترین در روش باریکاتی در فاصله 1.00 تا 1.70 mm می‌باشد. به‌طور کلی، نتایج نشان می‌دهد که روش‌های ارائه شده می‌توانند با بهبود قابلیت ترکیب سطحی و نتایج نشان می‌دهد که مدل‌سازی دو روش به صورت متنوع و قابلیت ترکیب سطح نمونه‌های آلومینیم مشابه‌ترین در روش باریکاتی در فاصله 1.00 تا 1.70 mm می‌باشد. به‌طور کلی، نتایج نشان می‌دهد که روش‌های ارائه شده می‌توانند با بهبود قابلیت ترکیب سطحی و نتایج نشان می‌دهد که مدل‌سازی دو روش به صورت متنوع و قابلیت ترکیب سطح نمونه‌های آلومینیم مشابه‌ترین در روش باریکاتی در فاصله 1.00 تا 1.70 mm می‌باشد. به‌طور کلی، نتایج نشان می‌دهد که روش‌های ارائه شده می‌توانند با بهبود قابلیت ترکیب سطحی و نتایج نشان می‌دهد که مدل‌سازی دو روش به صورت متنوع و قابلیت ترکیب سطح نمونه‌های آلومینیم مشابه‌ترین در روش باریکاتی در فاصله 1.00 تا 1.70 mm می‌باشد. به‌طور کلی، نتایج نشان می‌دهد که روش‌های ارائه شده می‌توانند با بهبود قابلیت ترکیب سطحی و نتایج نشان می‌دهد که مدل‌سازی دو روش به صورت متنوع و قابلیت ترکیب سطح نمونه‌های آلومینیم مشابه‌ترین در روش باریکاتی در فاصله 1.00 تا 1.70 mm می‌باشد. به‌طور کلی، نتایج نشان می‌دهد که روش‌های ارائه شده می‌توانند با بهبود قابلیت ترکیب سطحی و نتایج نشان می‌دهد که مدل‌سازی دو روش به صورت متنوع و قابلیت ترکیب سطح نمونه‌های آلومینیم مشابه‌ترین در روش باریکاتی در فاصله 1.00 تا 1.70 mm می‌باشد. به‌طور کلی، نتایج نشان می‌دهد که روش‌های ارائه شده می‌توانند با بهبود قابلیت ترکیب سطحی و

مقدمه

فلز آلومینیم به عنوان یکی از فلزات خواص مانند سیبک، استحکام، مقاومت در برابر خوردگی در شرایط محسوب می‌شود. اپوکسی، از مواد شیمیایی آسان شکل پذیر، رسانای گرمایی و الکتریکی بسیار خوب، حداکثر بودن میزان سمیت در مقایسه با سایر فلزات و رنگ پذیری

Key Words

amino silane compound, aluminium, adhesion strength, epoxy coating, surface pretreatment
جدول ۱- بهبود دهنده‌های چسبندگی تجاري سیلان [۱۸]
آزمایش های اکسیداسیون از آلومینیم اراک، آلومینیوم اتوسیس تی مخازن سیلان از شرکت شیمیایی آلدریچ با ظلگونی 97 درصد و پوشش اپوکسی 100 درصد چسبانده شده به سخت کننده بر روی آلومینیوم اکسید شیمیایی سمن تهیه شد. سپس مواد شیمیایی مورد استفاده از نوع آزمایشگاهی و با خلوص بالا پرداخته شد. فرمول شیمیایی NH₄(CH₃)₂Si(OCH₃)₃ آلومینیوم اتوسیس تی مخازن سیلان به شکل 1 و 2 است. است. دستگاه‌ها قابلیت ترسخ منوپره‌های آماده سازی شده با اندازه‌گیری زاویه استفاده مدل 1203 Kruss روی ایستگاه FTIR-ATR بر مهندسی شیمیایی بین اکسید فلز و لایه سیلان از دستگاه برای محلول RFS جدیدترین تحقیقات در این سطح اول گرفته و برای اولین بار در این سطح اول گرفته است. مزیت اصلی را دارد که تست آماده سازی چسبندگی بهینه از سیلان خاص برای ترکیب معین از زیر‌آینده و پوشش استفاده کرد. این عیب روش پیش‌بینی این است که برای اعمال پوشش یک روش جدید برای داشتن لایه‌های غلیظ با نسبت به باج در نظر می‌گیرد و برای کاهش زیاد در حال خشونت و سیلیکا و سیلان این این مناسبان است که در استفاده از سیلان‌ها با عنوان ماده افزودنی در فیلم‌های پوشش و عبور دارد. این از انجام این پژوهش بررسی اثر آمینوسیلان‌ها به شکل یک روش آماده سازی سطح آلومینیم با آلاین 1050 با عناوین بهبود دهنده چسبندگی قبل از اعمال پوشش اپوکسی است. بدین منظور سطح آلومینیم با استفاده از محلول سیلان APA سطح آماده‌سازی شد و سپس پوشش اپوکسی بدون رنگ‌دانه روی آن اعمال گردید. آزمایشات روي مقادیر انرژی و تغییرات جذور آلومینیم بالایی و چسبندگی پوشش اپوکسی بررسی شد.

تجربی

مواد ورته آلومینیم آلاین سری 1050 با ضخامت 0.5 mm از شرکت
آزمون اندازه‌گیری کشش سطحی

اندازه‌گیری کشش سطحی نمونه‌های آماده‌سازی شده با استفاده از ترکیب سیلان داره روش آستین اندازه‌گیری گرید. در این روش، نمونه مورد آزمایش روی محل نگه دارند. قرار داده شد. سپس، مایعات مختلف با ارته‌های سطحی متفاوت با استفاده از سرنگ مخصوص و با حجم حدود 0/50 ملی‌لیتر از سطح نمونه قرار داده شدند. زاویه بین خط مینی مقرط قطع و خط ممسان یا روی تصویر برگه شده قطع، در صفحه نمایشگر معین شد. در شکل ۱ تصویر کلی دستگاه و شکل قطعه روی سطح نمونه نشان داده شده است.

جدول ۲- کشش سطحی مایعات مورد آزمایش بر حسب mN/m

<table>
<thead>
<tr>
<th>مایع</th>
<th>جزء براکنده (γD)</th>
<th>جزء قطعی (γP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>آب</td>
<td>۵۷/۰</td>
<td>۶۱/۸</td>
</tr>
<tr>
<td>کلریسیرین</td>
<td>۶۷/۴</td>
<td>۷۳/۰</td>
</tr>
<tr>
<td>فرمائید</td>
<td>۶۸/۷</td>
<td>۷۸/۲</td>
</tr>
<tr>
<td>بنزیل الکل</td>
<td>۸۷/۷</td>
<td>۸۳/۹</td>
</tr>
</tbody>
</table>

آزمون FTIR-ATR

از سطح آلومینیم آماده‌سازی شده با محلول سیلان به غلظت ۵۰ درصد و زنی طیف FTIR-ATR برداشت شد.

آزمون جابجایی چسبندگی

آزمون نیروی جابجایی چسبندگی (cross-cut) یا (pull-off) اندک از استاندارد ASTM D۶۱۸۵۵ بوده است. از جعبه‌ای با طبقه استاندارد نمونه‌ها به مدت ۱۰۰۰ ساعت در محیط رطوبت قرار داده شدند و با فاصله بعد از این مدت آزمون نیروی جابجایی صورت گرفت.

نتایج و بحث

آزمون کشش سطحی

کشش صورت گرفت. آزمون به این ترتیب انجام شد که ابتدا با استفاده از چسب فری سیلان‌آکریل‌های گرید مخصوص آزمون (dolly) نمونه پوشش یافته چسب‌پایه می‌شود. پس از خشک شدن کامل (جده ۲ ساعت)، گیره در محل مخصوص سکنگ قرار می‌گیرد و سپس اعمال نیرو به چندین چرخه شروع می‌شود. اعمال نیروی یک‌نواخت تا جدا شدن تمامی سطح به حجم بسیار بزرگ با سرعت بالا به نمونه‌های مورد بررسی در این پژوهش، اعمال نیرو تا جدا شدن کامل نمونه‌ها از سطح ادامه یافت.
ملاحظه: می‌شود با اعمال لایه سیلان تغییرات قابل توجهی در جریان انتزی سطحی وجود می‌آید. بنابراین این تغییرات در نتیجه ایجاد گروه‌های قطعی روی سطح زیرآبی ایجاد می‌شود.

در نتیجه آماده‌سازی نمونه با محول سیلان وزایی تماس کاوش‌می‌شود که ناشی از افزایش نسبی در میزان قابلیت ترشان شدن زیرآبی NH3 است. دلیل این امر را می‌توان به وجود گروه‌های قطعی از قبل روی سطح آلومینیم نسبت داد. به‌دست آمده نشان میدهد که ترشش قابلیت ترش شدن سطح به تعیین انتزی سطحی این ارائه شده است [48] و در امکان به‌روش‌های ترشان شدن نمونه‌های آماده‌شده از روی سطح آلومینیم خود و آن به عنوان می‌تواند برای افزایش قابلیت ترش شدن سطح استفاده کرد. پیک جامد از لحاظ نظری مربوط به زاویه تماس صفر درجه است که ترشش شدیدتر بوده و در جدول 4 انتزی سطحی بحیره معین شده برای نمونه‌های مختلف آورده شده است.

از آنجا که مقدارهای بروزیاگی شده است، ممکن است برای سطح بکسان به سیلوسیوم مورد آزمون تغییر کند. بنابراین، برای به حداقل رساندن اختلافات بین مقدارهای بسته آماده، آنژ و همکاران انتزی سطحی را به عنوان تکیه‌گاهی از دو عامل جریان قطعی و جریان برآمد (4)

$$\gamma = \gamma_Y + \gamma_P$$

رابطه زاویه تماس با انتزی سطحی به شکل زیر بیان می‌شود:

$$\gamma' = \frac{(1 + \cos(\theta))}{2} \left[\frac{P_P}{P_L} \right]^{1/2} + \frac{\gamma_S}{\gamma_L^{1/2}}$$

بنابراین اجزای انتزی سطحی و γ_S و γ_L را می‌توان با رسم P_P و P_L در مقیاس $\left(1 + \cos(\theta)\right)$ و γ_S موجود در (4) عرض یک المان‌شناختی بسته آماده بدست آورده و در شکل 2 روش اندازه‌گیری قطعی سطحی به روش آنژ - و در این نمونه چربی‌گیری شده آماده است و در جدول 4 انتزی سطحی بحیره می‌باشد. شده به این روش برای نمونه‌های مختلف آورده شده است. چنانچه

جدول 4 - نتایج محاسبه مقادیر انتزی سطحی بحیره و انتزی سطحی به روش آنژ و آوز

<table>
<thead>
<tr>
<th>روش آماده سازی</th>
<th>روش زیسمن و آوز</th>
</tr>
</thead>
<tbody>
<tr>
<td>رسوپ زیسی</td>
<td>شده</td>
</tr>
<tr>
<td>با محلول سیلان</td>
<td></td>
</tr>
</tbody>
</table>

تعیین انتزی سطحی انتزی سطحی مواد جامد به‌طور مناسبی توسط خط‌های گیری صدایی تماس برای میزان شدت این اجسام می‌شود. روشهای مختلط برای تعیین انتزی سطحی ارائه شده است [48] که از انتخاب روش‌‌پذیرتعیین انتزی سطحی استفاده کرد. پیک جامد از لحاظ نظری مربوط به زاویه تماس صفر درجه است که ترشش شدیدتر بوده و در جدول 4 انتزی سطحی بحیره معین شده برای نمونه‌های مختلف آورده شده است.

از آنجا که مقدارهای بروزیاگی شده است، ممکن است برای سطح بکسان به سیلوسیوم مورد آزمون تغییر کند. بنابراین، برای به حداقل رساندن اختلافات بین مقدارهای بسته آماده، آنژ و همکاران انتزی سطحی را به عنوان تکیه‌گاهی از دو عامل جریان قطعی و جریان برآمد (4)

$$\gamma = \gamma_Y + \gamma_P$$

رابطه زاویه تماس با انتزی سطحی به شکل زیر بیان می‌شود:

$$\gamma' = \frac{(1 + \cos(\theta))}{2} \left[\frac{P_P}{P_L} \right]^{1/2} + \frac{\gamma_S}{\gamma_L^{1/2}}$$

بنابراین اجزای انتزی سطحی و γ_S و γ_L را می‌توان با رسم P_P و P_L در مقیاس $\left(1 + \cos(\theta)\right)$ و γ_S موجود در (4) عرض یک المان‌شناختی بسته آماده بدست آورده و در شکل 2 روش اندازه‌گیری قطعی سطحی به روش آنژ - و در این نمونه چربی‌گیری شده آماده است و در جدول 4 انتزی سطحی بحیره می‌باشد. شده به این روش برای نمونه‌های مختلف آورده شده است. چنانچه

جدول 4 - نتایج محاسبه مقادیر انتزی سطحی بحیره و انتزی سطحی به روش آنژ و آوز

<table>
<thead>
<tr>
<th>روش آماده سازی</th>
<th>روش زیسمن و آوز</th>
</tr>
</thead>
<tbody>
<tr>
<td>رسوپ زیسی</td>
<td>شده</td>
</tr>
<tr>
<td>با محلول سیلان</td>
<td></td>
</tr>
</tbody>
</table>
آزمون برخ منطقه
در هر حال ۲ تا ۳ نمونه مورد آزمایش قرار گرفت. در حالت خشک بیژر در نمونه رسوپ زدایی شده. در سایر نمونه ها ام از کرومات دار شده و آماده سازی شده با محلول سیلان (ASTM D3339) B و B. نتایج آزمون برخ منطقه در حالت تر در جدول ۵ را ارائه شده است. با توجه به نتایج این آزمون ملاحظه می‌شود که بهترین کیفیت استفاده از سیلان با افزایش کششی نیل. اما از نظر کیفی ممکن است برای برخ آفرینی بهتر از آزمون جدایی کششی استفاده می‌شود.

جدول ۵ - نتایج آزمون‌های چسبنده‌گی به روشهای برخ منطقه و جدایی کششی در حالت‌های خشک، تر و بازیافتی (اعدا داخل پرانتز احتراف معیار میانگین اندازه گیری شده است).

<table>
<thead>
<tr>
<th>ترکیب کششی</th>
<th>برخ منطقه</th>
<th>آزمون</th>
<th>روش آماده‌سازی</th>
</tr>
</thead>
<tbody>
<tr>
<td>چسبنده‌گی</td>
<td>چسبنده‌گی پزیفی</td>
<td>چسبنده‌گی خشک</td>
<td>چسبنده‌گی تر</td>
</tr>
<tr>
<td>درصد</td>
<td>درصد</td>
<td>درصد</td>
<td>درصد</td>
</tr>
<tr>
<td>۳۵</td>
<td>۱۶</td>
<td>۶</td>
<td>۶</td>
</tr>
<tr>
<td>۸</td>
<td>۸</td>
<td>۸</td>
<td>۸</td>
</tr>
<tr>
<td>۱۶</td>
<td>۱۶</td>
<td>۱۶</td>
<td>۱۶</td>
</tr>
<tr>
<td>۸</td>
<td>۸</td>
<td>۸</td>
<td>۸</td>
</tr>
<tr>
<td>۴۰</td>
<td>۴۰</td>
<td>۴۰</td>
<td>۴۰</td>
</tr>
</tbody>
</table>
شکل 4 - چسبندگی نمونه‌های مختلف در حالت‌های خشک، تر و بازیافتی.

نتیجه‌گیری

با توجه به نتایج بدست‌آمده از آزمون تعیین قابلیت تشاند و طیف سنجی FTIR-ATR، می‌توان یپش بینی کرد که اماده سازی نمونه‌ها با مخلوط سیلان، به دلیل وجود ترکیبات قطبی از Q، آلومینیم که به معنای افزایش تماس فیزیکی بین پوشش و زیرآیند است، افزایش تبدیلی در ثانیه تشاند و افزایش نیز به میزان می‌یابد.

آزمون جدایی کشی

در هر حالت ۵ نمونه مورد آزمایش قرار گرفت که میانگین اعداد بدست آمده در جدول ۵ و شکل ۴ ارائه شده است. همچنین در جدول ۵ و شکل ۵ نتایج اندوزه‌گیری درصد چسبندگی‌های از دست رفته و بزیرآیند نسبت به حالت خشک ارائه شده است. ملاحظه کنید که در حالت استفاده از سیلان به عنوان بسته‌ای آماده سازی به‌ویژه قابلیت توجه در چسبندگی خشک، تر و بزیرآیند نسبت به نمونه رسوپادی زایم شده و حتی نمونه کروم‌دار شده مشاهده می‌شود. دلیل این امر را می‌توان با توجه به مکانیسم‌های عملکرد بی‌بدنبازی چسبندگی به برقراری

مراجع

7. Mirabedini S.M., Scantlebury J.D., Thompson G.E. and Moradi-
ian S., Polyaerylic Acid as a Surface Pretreatment for 1050 Alu-
minum Alloys, 2nd International Symposium on Aluminum Sur-
face and Science Technology, UMIST, Manchester, 485-490,
2000.

and Stratmann M., Ultrathin Organic Layers for Corrosion Pro-

9. Buchheit R.G. and Drewne C.A., Non-Chromate Talc Conver-
sion Coatings for Aluminium, 18th DOE Compatibility, Ageing

10. Melzer J.I.; Chromium Free Aluminum Treatment, US Pat. 5,

11. Mirabedini S. M., The Role of the Interfacial Layer on the Per-
formance of a Powder Coated Aluminium Alloy, PhD Thesis,

Hughes A.E., Auger and XPS Studies of Cerium Corrosion Inhi-

13. Schrieever M.P., Non Chromate Oxide Coating for Aluminum

14. Danilids I., Sykes J.M., Hunter J.A. and Scamans G.M.,
Maganese Based Corrosion Treatment, Surf. Eng., 15, 401-407,
1999.

Alternative Conversion Coatings for Aluminium in Buffered
Molybdate Solutions, Protugaliae Electrochemica Acta, 15,

16. Pearlstein F. and Agarwala V.S., Trivalent Chromium Conver-

17. Kachurina O., Metroke T.L., Stesikova E. and Knobbe E.T.,
Comparison of Single and Multilayer Coatings Based on

Ornobil and Conversion Layers for Aluminum Alloy Corrosion

19. Structural Adhesive: Developments in Resin and Primers, Kin-

20. Silane Coupling Agents, Plueddemann E.P. (Ed.), Plenum, New
York, 1982.

21. Rosen M.R., From Treating Solution to Filler Surface and

22. Wilader B., Silane Coupling Agents Improve Performance,

23. Walker P., Organo Silanes as Adhesion Promoters for Organic

25. Oosting R., Durability and Performance of Treated Aluminum
Substrates, PhD Thesis, Delft University of Technology, The

27. Child T. and Van Ooij W.J., Application of Silane Technology to
Prevent Corrosion of Metals and Improve Paint Adhesion, Coat.

Adsorbed onto Oxidized Aluminum, Polym. Prepr., 22, 297-303,
1981.

29. Boero F.J., Structure and Properties of Silane Primers for Adhe-