During the past two decades the use of lignocellulous fibers in reinforcing composites has attracted much research activities. In the present work, date palm fiber was used for production of composites compatible with living environment. The fibers were pre-treated chemically to remove impurities. In order to verify and compare the effectiveness of the pretreatment methods, lignin, ash, moisture adsorption, diameter and tensile strength of the raw and treated fibers were considered in all determinations. Some chemical contents of the treated fibers were also estimated by FTIR method. The heating characteristics of the fibers were evaluated using simultaneous thermal analysis (SAT) technique. The treated fibers were mixed with HDPE by mass proportions of 10, 20 and 30% of the fibers in two types of fine and coarse sizes. Composite flower pots were prepared from the formulations by extrusion process. The mechanical properties of the composites including tensile strength, modulus of elasticity, strain, and impact strength were measured by standard ASTM methods. Statistical analysis of the data revealed that the treated fibers had smaller diameters containing lower levels of lignin and ash though having significantly higher tensile strength, heat resistance and moisture adsorption. The results also indicated that by increase in fibre size the tensile strength, modulus of elasticity and moisture adsorption of the composites are increased and their strain and impact resistance are decreased. The composites prepared using fine fibers showed higher tensile strength, modulus of elasticity and impact strength but their moisture adsorption and elongation were significantly lower.
بررسی برخی مشخصه‌های زیست کامپوزیت‌های تهیه شده از الیاف نخل خرمای خالص‌سازی شده به روش شیمیایی

حامد غفارزاده زارع، احمد غضفري مقدم، حسن هاشمی پورفرسنجاني

کرمان، دانشگاه شهید باهنر کرمان، صنادوق بلیک، ۱۳۹۷-
۱- دانشکده کشاورزی، گروه هندسی مکانیک ماسی‌های کشاورزی،
۲- پژوهشکده باغبانی و ۳- دانشگاه فن و هندسی، گروه هندسی شیمی

دریافت: ۸۹/۲/۱۲ پذیرش: ۸۹/۱/۳۰

چکیده

در دو دهه گذشته، استفاده از الیاف لیگنوسولولوژی برای تقویت کامپوزیت‌ها مورد توجه ژوهرگران قرار گرفته است. در این پژوهش با منظور استفاده از الیاف خرمای در تولید محصولات کامپوزیتی، این الیاف به روش شیمیایی خالص‌سازی شده و برای آگاهی از اثر این فرایندهای ترمیمی، خاکستر، ذوب رطوبیت، قطر و استحکام کششی الیاف خام و خالص‌سازی شده، اندوزه‌گیری و با یکدیگر مقایسه شدند. همچنین، اثر خالص‌سازی روی ترکیبات شیمیایی الیاف به روش طیف‌سنجی زیر قرنطین تبدیل بررسی شد. الیاف خالص‌سازی (FTIR) فوریه‌ای و خواص کامپوزیت با روش تجزیه فرآیند هم‌زنمان (STA) و اندازه‌گیری در خازن‌های عصبی و درشت با پیانات‌های مختلف مخاطب است. این تحقیق از ابطال‌های کامپوزیت، کمپوزیت کننده، کمپوزیت پیچیده، کرنش پیچیده، جذب رطوبیت و استحکام ضروری نیستند این کاربرد گزارش و با استفاده از طرح فاکتوریل تجزیه و تحلیل شد. نتایج نشان می‌دهد الیاف خالص‌سازی شده درصد لیگنین، خاکستر و قطر کمتر و استحکام کششی، مقاومت کامپوزیت و جذب رطوبیت بیشتری نسبت به الیاف خام دارند. همچنین با افزایش درصد الیاف در کامپوزیت مقدار استحکام کششی دل‌کشسان و درصد جذب رطوبیت کامپوزیت افزایش و درصد کرنش و استحکام ضروری ای کاهش می‌یابد. کامپوزیت‌های تهیه شده از الیاف ریز استحکام کششی، مدول کشسانی و استحکام پیچیده‌ی بیشتری نسبت به کامپوزیت تهیه شده از الیاف درشت دارند، ولی درصد جذب رطوبیت و کرنش پیچیده آنها کمتر است.

*منسوخ مکاتبات، پای پنبه
aghasanfari@mail.uk.ac.ir
مقدمه

در سال‌های اخیر به عنوان مشکلاتی زیست محیطی و هرزین زیاد استفاده از الاف مصنوعی در تولید کامپوزیت بیز، پژوهش‌های گسترده‌ای برای جایگزینی این الاف با الاف طبیعی انجام شده است. از جمله موادی که استفاده از الاف مصنوعی یا جایگزین آن برای استفاده در کامپوزیت‌های مصرف‌آور نیروی آنها که برای تولید، توانایی و باعث کاهش تانگ‌ها برای امرورده، الاف لیگن سالورولی جایگزین ردیاب بر مصالح مختلف کامپوزیت بیزی شده و

جریبی

مواد و دستگاه‌ها

در این پژوهش، از الاف نخل خرمایی که به عنوان شهیده در شهست رکبان و پل ایلین سنتگین، مورد استفاده با نام تجاری HD5620EA محصول صنعت پتروشیمی علی استفاده شد. دستگاه آزمون کشت (ساخت شرکت جاوا مکانیک و مهندسی) ساخت STA 409 PG Luxx، NETZSCH Inc مدل 27 Brucker آماده و تیپ سنجی قابلیت تبدیل قویه ساخت آلمن به کار گرفته شد.

روش‌ها

داخل‌سازی الاف

الاف نخل خرمایی به‌صورت جداگانه از منطقه‌های تهیه شده در اسطوان مذکور به آنها بسته شده و مورد بررسی قرار گرفته شده است. الاف نخل خرمایی از الاف به عنوان شهیده بر روی الاف نخل خرمایی مورد استفاده بناست. الاف نخل خرمایی در محدوده 3-250 mm (375-1 کمتر از 110 mm) و با مقادیر مختلف آنها نشان داده می‌کند که در این الاف کنف به عنوان پروپانول پلی اتیلن دارای همکاری در ساخت فلات و تغییر در استفاده کمی در استفاده کرده، می‌تواند در مقایسه با اندازه‌های ساخته شده در بخاری که برای اولین بار در اندازه‌های ساخته شده در بخاری که برای اولین بار در

اندازه گیری خواص الاف

برای تعیین درصد لیگنین، از الاف داخل به‌صورت برش و حتی به ازای 0.100 یا 0.150 mL سولفونیک اسید (173) به آن اضافه و مدت 30 دقیقه نگهداری شده، محصول شده و گاز‌شناسی شده شده، و در نهایت از الاف، از الاف 100 رASS، 0.5 میکرون‌های میان‌سازی به عنوان پدیده و هرزین

در حالی که می‌توان با خالص سازی تکراری و تهیه
برنی بررسی صناعه‌های نیز، که بر اساس آزمون ضریبهای افزایش دارای استاندارد ASTM D 256 با استفاده از دستگاه آزمون ضریبهای استاندارد 50 mm x 50 mm و ضریب ایفای 0.5 در میلی‌متر به طول 250 mm و عرض 25 mm و 6 mm کامپوزیت، تنوع هایی باعث همزمانه و بهبودی در مقدار بحرانی در آب آبیاری، مقدار بحرانی و مقایسه ترکیبات شیمیایی مورد استفاده.[12] تجهیز و تحلیل داده‌ها

تجهیز و تحلیل داده‌های هر خصوصیت اندازه‌گیری شده با استفاده از طرح کامل تصادفی با پنج نمونه که در انجام با تعیین دار بودن اختلاف بین میانگین‌های هر خصوصیت برای الاف یا خالص سازی شده در سطح معنی‌دار 0.01 بررسی شد. تجربیات و تحلیل آماری و مقایسه خواص کامپوزیت تنها به شکل ایفای از یک طرف فاکتور تری 2×3 در قالب طرح کامل تصادفی به کمک نرم‌افزار SAS انجام و معنی‌دار بودن اختلاف بین میانگین‌های هر یک از سطح و خالص سازی شده در سطح معنی‌دار 0.01 بررسی شد.

تعیین خواص گرمایی الاف ضریبهای تنوع هایی باعث همزمانه و بهبودی در مقدار بحرانی در آب آبیاری، مقدار بحرانی و مقایسه ترکیبات شیمیایی مورد استفاده.[12] تجهیز و تحلیل داده‌ها

تجهیز و تحلیل داده‌های هر خصوصیت اندازه‌گیری شده با استفاده از طرح کامل تصادفی با پنج نمونه که در انجام با تعیین دار بودن اختلاف بین میانگین‌های هر خصوصیت برای الاف یا خالص سازی شده در سطح معنی‌دار 0.01 بررسی شد. تجربیات و تحلیل آماری و مقایسه خواص کامپوزیت تنها به شکل ایفای از یک طرف فاکتور تری 2×3 در قالب طرح کامل تصادفی به کمک نرم‌افزار SAS انجام و معنی‌دار بودن اختلاف بین میانگین‌های هر یک از سطح و خالص سازی شده در سطح معنی‌دار 0.01 بررسی شد.

تعیین خواص گرمایی الاف ضریبهای تنوع هایی باعث همزمانه و بهبودی در مقدار بحرانی در آب آبیاری، مقدار بحرانی و مقایسه ترکیبات شیمیایی مورد استفاده.[12] تجهیز و تحلیل داده‌ها

تجهیز و تحلیل داده‌های هر خصوصیت اندازه‌گیری شده با استفاده از طرح کامل تصادفی با پنج نمونه که در انجام و معنی‌دار بودن اختلاف بین میانگین‌های هر خصوصیت برای الاف یا خالص سازی شده در سطح معنی‌دار 0.01 بررسی شد. تجربیات و تحلیل آماری و مقایسه خواص کامپوزیت تنها به شکل ایفای از یک طرف فاکتور تری 2×3 در قالب طرح کامل تصادفی به کمک نرم‌افزار SAS انجام و معنی‌دار بودن اختلاف بین میانگین‌های هر یک از سطح و خالص سازی شده در سطح معنی‌دار 0.01 بررسی شد.

تعیین خواص گرمایی الاف ضریبهای تنوع هایی باعث همزمانه و بهبودی در مقدار بحرانی در آب آبیاری، مقدار بحرانی و مقایسه ترکیبات شیمیایی مورد استفاده.[12] تجهیز و تحلیل داده‌ها

تجهیز و تحلیل داده‌های هر خصوصیت اندازه‌گیری شده با استفاده از طرح کامل تصادفی با پنج نمونه که در انجام و معنی‌دار بودن اختلاف بین میانگین‌های هر خصوصیت برای الاف یا خالص سازی شده در سطح معنی‌دار 0.01 بررسی شد. تجربیات و تحلیل آماری و مقایسه خواص کامپوزیت تنها به شکل ایفای از یک طرف فاکتور تری 2×3 در قالب طرح کامل تصادفی به کمک نرم‌افزار SAS انجام و معنی‌دار بودن اختلاف بین میانگین‌های هر یک از سطح و خالص سازی شده در سطح معنی‌دار 0.01 بررسی شد.

تعیین خواص گرمایی الاف ضریبهای تنوع هایی باعث همزمانه و بهبودی در مقدار بحرانی در آب آبیاری، مقدار بحرانی و مقایسه ترکیبات شیمیایی مورد استفاده.[12] تجهیز و تحلیل داده‌ها

تجهیز و تحلیل داده‌های هر خصوصیت اندازه‌گیری شده با استفاده از طرح کامل تصادفی با پنج نمونه که در انجام و معنی‌دار بودن اختلاف بین میانگین‌های هر خصوصیت برای الاف یا خالص سازی شده در سطح معنی‌دار 0.01 بررسی شد. تجربیات و تحلیل آماری و مقایسه خواص کامپوزیت تنها به شکل ایفای از یک طرف فاکتور تری 2×3 در قالب طرح کامل تصادفی به کمک نرم‌افزار SAS انجام و معنی‌دار بودن اختلاف بین میانگین‌های هر یک از سطح و خالص سازی شده در سطح معنی‌دار 0.01 بررسی شد.

تعیین خواص گرمایی الاف ضریبهای تنوع هایی باعث همزمانه و بهبودی در مقدار بحرانی در آب آبیاری، مقدار بحرانی و مقایسه ترکیبات شیمیایی مورد استفاده.[12] تجهیز و تحلیل داده‌ها

تجهیز و تحلیل داده‌های هر خصوصیت اندازه‌گیری شده با استفاده از طرح کامل تصادفی با پنج نمونه که در انجام و معنی‌دار بودن اختلاف بین میانگین‌های هر خصوصیت برای الاف یا خالص سازی شده در سطح معنی‌دار 0.01 بررسی شد. تجربیات و تحلیل آماری و مقایسه خواص کامپوزیت تنها به شکل ایفای از یک طرف فاکتور تری 2×3 در قالب طرح کامل تصادفی به کمک نرم‌افزار SAS انجام و معنی‌دار بودن اختلاف بین میانگین‌های هر یک از سطح و خالص سازی شده در سطح معنی‌دار 0.01 بررسی شد.
نتایج و بحث

خواص الیاف

میانگین خواص اندازه‌گیری شده برای الیاف خام و خالص سازی شده در جدول ۲ آمده است. همان طور که ملاحظه می‌شود، درصد لیگنین و خاستگر در الیاف خالص سازی شده نسبت به الیاف خام کاهش چشم‌گیری داشته است. نسبت ۰/۷۵ در الیاف خالص سازی شده از الیاف خام است. این نتایج از انتظار جذابی که رطوبت در و سیستم الیاف خالص خشکی است. در اینجا از شرایط مورد نیاز داده شده و ارائه‌شده‌است. در اینجا از شرایط مورد نیاز داده شده و ارائه‌شده‌است.

شکل ۲. طيف FTIR برای الیاف خام و خالص سازی شده.

در جدول ۲ آمده است. همان طور که در این جدول مشاهده می‌شود، استخ圾 کشی الیاف

خالص سازی شده نسبت به استخ圾 کشی الیاف خام حدود ۷۰ درصد افزایش دارد و در نتیجه برای تغییر کمیتی می‌تواند استفاده به جدید رطوبت. قطر و استحکام کشی نشان داد. اختلاف معنی‌داری بین میانگین این متغیرها در الیاف خام و خالص سازی شده وجود دارد.

شکل ۲ طیف‌های FTIR به دست آمده برای الیاف خام و الیاف خالص سازی شده را نشان می‌دهد. الیاف خالص سازی شده نسبت به الیاف خام دامی شروع و پایان تغییر به‌طور دیده‌است. دامای شروع تغییر خالص سازی شده نسبت به الیاف شروع تغییر الیاف خام ۲۶ در درصد افزایش دارد. این مرحله می‌تواند استفاده از عمل‌آوری شیمیایی در افزایش مقادیر الیاف کاهش را در این دسته است. افزایش دامی تغییر در الیاف خالص سازی شده به کاهش مقادیر لیگنین و همی سولز و افزایش مقادیر سولز در الیاف نسبت به الیاف خام می‌تواند باعث این نتایج داده شده باشد. همان‌طور که ملاحظه می‌شود، در طیف الیاف خالص سازی

جدول ۲. خواص شیمیایی، فیزیکی و مکانیکی الیاف.

<table>
<thead>
<tr>
<th>الیاف</th>
<th>جذب (MPa)</th>
<th>قطر (μm)</th>
<th>استحکام کشی (Kc)</th>
<th>لیگنین (%)</th>
<th>خاستگر (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>خام</td>
<td>۴۸</td>
<td>۷۱</td>
<td>۱۹۷</td>
<td>۹۷</td>
<td>۲</td>
</tr>
<tr>
<td>خالص سازی شده</td>
<td>۸۰</td>
<td>۹۶</td>
<td>۱۹۷</td>
<td>۹۷</td>
<td>۲</td>
</tr>
</tbody>
</table>
جدول ۲ - میانگین خواص اندازه‌گیری شده برای کامپوزیت‌های مختلف.

<table>
<thead>
<tr>
<th>کشش (MPa)</th>
<th>مدوم کششی (MPa)</th>
<th>کشش پیشینه (δ)</th>
<th>جذب رطوبت (δ)</th>
<th>استحکام ضریب‌های (k/m²)</th>
<th>کامپوزیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۹۲</td>
<td>۹۹۷</td>
<td>۷۷۴</td>
<td>۵۷</td>
<td>۴/۲</td>
<td>HDPE</td>
</tr>
<tr>
<td>۱۹۸</td>
<td>۱۳۲۷</td>
<td>۷۱</td>
<td>۳۴</td>
<td>PE-D10</td>
<td></td>
</tr>
<tr>
<td>۲۰۳</td>
<td>۱۳۸۸</td>
<td>۷۷</td>
<td>۳۷</td>
<td>PE-D20</td>
<td></td>
</tr>
<tr>
<td>۲۱۶</td>
<td>۱۹۸۹</td>
<td>۷۴</td>
<td>۲۹</td>
<td>PE-D30</td>
<td></td>
</tr>
<tr>
<td>۲۱۶</td>
<td>۱۴۲۹</td>
<td>۷۲</td>
<td>۳۷</td>
<td>PE-R10</td>
<td></td>
</tr>
<tr>
<td>۲۱۶</td>
<td>۱۷۸۸</td>
<td>۷۰</td>
<td>۳۷</td>
<td>PE-R20</td>
<td></td>
</tr>
<tr>
<td>۲۳۹</td>
<td>۲۰۵۸</td>
<td>۶۲</td>
<td>۳۷</td>
<td>PE-R30</td>
<td></td>
</tr>
</tbody>
</table>

نتایج تجزیه واریانس نشان می‌دهد، اث نهایی و درصد یاف بر معول کششی کامپوزیت‌ها معنی‌دار دارد. ولی اثر معنی‌دار نیست.

جدول ۳ - نمودار تجزیه گرمايی الافام خام و خالص سازی شده.

خواص فیزیکی و مکانیکی کامپوزیت

میانگین خواص اندازه‌گیری شده برای کامپوزیت‌های تهیه شده در جدول ۴ ارده دیده شد است. استحکام کششی کامپوزیت‌های تهیه شده در عمل آوری های مختلف از ۲۵ تا ۳۰ درصد نسبت به نمونه پلیمری خالص افزایش داشته است. بیشترین مقدار استحکام کششی برای کامپوزیت ۲۰ درصد تهیه شده با الافام رز و یا ۲۰ درصد یاف است و کمترین مقدار استحکام کششی برای کامپوزیت تهیه شده با الافام درست و ۱۰ درصد یاف است. مقایسه کلی استحکام کششی الافام رز با دارند نشان داده که کامپوزیت‌های تهیه شده با الافام رز استحکام کامپوزیت‌های تهیه شده با الافام رز استحکام کامپوزیت‌ها معنی‌دار است.

جدول ۴ - نشان داده که کامپوزیت‌ها افزایش می‌یابد و کامپوزیت‌های تهیه شده با الافام رز دارای مدل کششی بیشتری هستند. بیشترین مقدار کامپوزیت سازی شده با الافام رز و کمترین مقدار نمونه بیلی ایلنی خالص نشان داد است. مدل کامپوزیت‌های تهیه شده در عمل آوری های مختلف کامپوزیت نسبت به نمونه بیلی ایلنی خالص ۱۰ تا ۱۵ درصد افزایش دارد.
نتیجه گیری

نتایج آزمایش‌های انجام شده روی الاف نخل خرما نشان می‌دهد، در الاف خالص سازی شده درصد لیگمین، همی سلولز و خاکستر کاهش یافته، اما درصد سلولز، مقاومت گرما و استحکام کششی افزایش می‌یابد. در مجموع خالص سازی شیمیایی الاف باعث بهبود خواص های فیزیکی، مکانیکی و گرامی آنها شد. بررسی خواص کامپوزیت‌های خهشه به درصد مختلف الاف در دو سطح ریز و درشت نشان می‌دهد، با افزایش درصد الاف استحکام کششی، درکشسانی و درصد جذب رطوبت افزایش یافته ولی درصد افزایش طول و استحکام ضرری‌های کاهش می‌یابد. از این نتایج می‌توان بستگی بر این افکاد استحکام گرما و استحکام کششی که با افزایش درصد الاف بهبودی بهرماند. درشت نشان می‌دهد، با افزایش درصد الاف ترکیب کششی کامپوزیت‌های خهسه به درصد جذب رطوبت بیشتری نسبت به الاف خهسه با الاف ریز نشان می‌دهد بنابراین، کامپوزیت‌های خهسه به درصد الاف ترکیب کششی کامپوزیت‌های خهسه به درصد جذب رطوبت بیشتری نسبت به الاف ریز دارند. تجربیات این داده‌ها نشان می‌دهد، درخواست از کامپوزیت‌ها توجهی به تهیه کامپوزیت‌ها و اثر مناسبی این دو عامل بر مقدار جذب رطوبت

مراجع

12. Sun X.F., Xu, F., Sun R.C., Fowler P., and Baird M.S., Charac-


