بررسی عوامل مؤثر بر مقدار تولید نانوطیف پلی اکریلونیتریل الکتروریسی شده

Investigation of Parameters Affecting the Productivity of Electrospun Polyacrylonitrile Nanofibers

روح الله جلیلی، محمدرضا سیدمحمدکریم حسینی

اصفهان، دانشگاه صنعتی اصفهان، قطب علمی فناوری نانو، پردیس صنعتی، دانشکده مهندسی فیزیک و کامپیوتر

دریافت: 82/06/27 پذیرش: 82/06/27

کیفیت

واژه‌های کلیدی

الکتروریسی، نانوفبر، تولید مقدار، قطر سوزن سریک

مقدمه

میدانی الکتروریسی برای سرعت دادن به جریان جمع‌آوری از ذرات نانویی مورد استفاده کرد [1]. سطح کروی‌بزن مطالعه در مورد تعادل در انرژی نانویی در میدان الکتریکی بارداری نمایش داده شده است. از طرف دیگر دیالی فیلتر قطع قطع برزخ بین ضخامت دانه‌های بوجود آمده و پخش دندان در سطح قطره به شکل

Key Words

electrospinning, nanofibers, productivity, syringe needle diameter, syringe needle length

*مشنل مکاتبات، پام بیکار

*moshrad@cc.iut.ac.ir
مدیریت که به مخروط تیلور مشهور است که می‌آید. با افزایش ولتاژ و سرعت آن به ۵۰ هر ثانیه، این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند. این نیرو برجسته سطحی قطره‌گر را چنین یادگیران از پیروشک بردارند.
روش‌ها

۱۵ دصرد درون سرنگ ریخته شد.

در هر آزمایش، کثرت بین نتایج با تغییر عوامل مختلف در هر آزمایش، نتایج اعمال بر صفر اوایل و نتایج در انتهای آن که کثرت از انتهای سوزن سرنگ خارج شد، به عنوان ولتاژ بحرانی لیت شد.

برای مشخص کردن مقدار تولید نانوایف با تغییر عوامل مختلف در ۱۰ دقیقه، کثرت بین نتایج در حال تولید به شدت پرورده شد. به سرعت جدی جمع کننده شدند.

نانوایف تولیدی با جوش و سیله صفحه آلومینیوم گرم شده، به مدت ۲۴ ساعت در گرمخانه به دمای ۷۰ درجه سانتی‌گراد، به سبب تجزیه تدریجی، به دست آمد.

پیش‌بینی و بررسی

تغییرات الکتروپریسی شامل پیش‌بینی برای کنترل جریان محلول، پلیری، منع تغییرات مختلف با توان ایجاد اختلاف دیافراگم تا ۲۰۰۰۰ میکروهوارم. جمع کشیده آلومینیوم، انواع سوزن سرنگ با تاپینت و ۲۵ cm طول و نانوایف از سوزن سرنگ و پلیری، محلول ۱۵۰ mg الکتروپریسی مادر خارجی و قطر خارجی تا ۱۰۰ mm است. هنگام استفاده از حلقوی مسی فرابند زیر همان شکل با تغییر اعمال پلیری که حداقل با استفاده از حلقوی تحریره و در انتهای پلیری که ۲۰۰ mg محلول لیتری پلیری که ۱۵۰ mg در مدت ۱۵ دقیقه، شکسته شد.

ماده

در این پژوهش از بی‌پاترولین (PAN) تجاری تهیه شده، از فرآیند کلک (کرنس) برای نانوایف تولید و یا ۰۰۰۰۰ mg از نانوایف در فراکسید کلک (کرنس) برای نانوایف تولید و یا ۰۰۰۰۰ mg از نانوایف در فراکسید کلک (کرنس) برای نانوایف تولید و یا ۰۰۰۰۰ mg از نانوایف در فراکسید کلک (کرنس) برای نانوایف تولید و یا ۰۰۰۰۰ mg از نانوایف در فراکسید کلک (کرنس) برای نانوایف تولید و یا ۰۰۰۰۰ mg از نانوایف در فراکسید کلک (کرنس) برای نانوایف تولید و یا ۰۰۰۰۰ mg از نانوایف در فراکسید کلک (کرنس) برای نانوایف تولید و یا ۰۰۰۰۰ mg از نانوایف در فراکسید کلک (کرنس) برای نانوایف تولید و یا ۰۰۰۰۰ mg از نانوایف در فرا
توجه داشته باشید

موجب تغییر در قطر و توزیع قطری نانوایی نهایی می‌شود. بنابراین ترتیب و درککردن نهایی، در طی عملیات توزیع قطری نانوایی مشکل را ایجاد کنند. می‌توان با افزایش ولتاژ، مقدار تولید را به شدت افزایش داد. بنظر می‌رسد، اگر نرخ‌های الکتریکی وارد بر جفت سیال، فقط در منشأ جفت الکتروریزی افزایش یابد. مقدار تولید بدون تغییر در قطر نانوایی تولیدی افزایش می‌یابد.

تغییر در برآمدگی نازل (nozzle protrusion) در میدان الکتریکی نتیجه باعث تغییر حریقی الکتریکی در فرآیند الکتروریزی می‌شود. این اثر به تغییر در اندازه تغییر می‌کند و این ویژگی در معادله تیتانول و قطر نازل سردرگم عمومی مؤثر در سرعت تغییر سطح بار از پارامتر الکتریکی و تغییر مقدار نرخ الکتروریزی وارد بر سطح قطر معلق در انتهای سردرگم بهره‌برداری می‌شود. بنابراین می‌توان بدون تغییر در قطر نانوایی مقدار تولید را در فرآیند الکتروریزی افزایش داد.

اثر قطر سردرگم

برای مشخص کردن اثر قطر سردرگم، آزمایش‌های الکتروریزی طبق جدول ۱ در طول تابع سردرگم معادل ۲۵ cm ضایع گذاری شد. گزارش‌هایی از تغییر ولتاژ بحرانی با تغییر قطر سردرگم بررسی شد. شکل ۳ (الف) نشان‌دهنده اثر قطر سردرگم در لحظه قطع الکتروریزی با نرخی کمتر در سطح قطر در تعادل، نشان می‌دهد. با افزایش ولتاژ و رساندن نرخ بحرانی، این نرخ بركش سطحی قطره علیه‌کره، چنان‌که پرفشار از نظر مخاطره‌ای بروز می‌گردد.

جدول ۱ اثر الکتروریزی برای بررسی اثر قطر سردرگم بر مقدار تولید نانوایی

<table>
<thead>
<tr>
<th>قطر سردرگم (μm)</th>
<th>طول سردرگم (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۹۰۰</td>
<td>۲۵</td>
</tr>
<tr>
<td>۸۰۰</td>
<td>۲۵</td>
</tr>
<tr>
<td>۷۰۰</td>
<td>۲۵</td>
</tr>
<tr>
<td>۶۵۰</td>
<td>۲۵</td>
</tr>
<tr>
<td>۵۰۰</td>
<td>۲۵</td>
</tr>
</tbody>
</table>

شکل ۲ تغییر قطر نانوایی با افزایش ولتاژ (محلول ۱۵ درصد DMF) و برابری PAN/DMF و تغییر ولتاژ (kV).

شکل ۱ اثر ولتاژ الکتروریزی بر مقدار تولید نانوایی (مقدار تولید در ۱۰ min.)

ولتاژ ۲۰ (kV) افزایش می‌یابد. اما همگام با تغییر قطر نانوایی ولتاژ شده بلافاصله افزایش می‌یابد. اگر مقدار تغییر قطر نانوایی الکتروریزی شده را نسبت به افزایش ولتاژ نشان می‌دهد. با افزایش ولتاژ، میدان الکتریکی افزایش یافته، مقدار منافکی الکتروسیاتیک وارد برتانه سردرگم و مشابه جفت الکتروریزی افزایش می‌یابد. این افزایش در میدان الکتریکی در تکمیل سیر جفت الکتروریزی بر اثر کاهش در نمایندگی الکتروریزی می‌باشد.}

c141
c141
c143
c143
c143

<table>
<thead>
<tr>
<th>ولتاژ اعمالی (kV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰۰</td>
</tr>
<tr>
<td>۱۱۰</td>
</tr>
<tr>
<td>۱۲۰</td>
</tr>
<tr>
<td>۱۳۰</td>
</tr>
<tr>
<td>۱۴۰</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ولتاژ اعمالی (kV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰۶۰</td>
</tr>
<tr>
<td>۰۷۰</td>
</tr>
<tr>
<td>۰۸۰</td>
</tr>
<tr>
<td>۰۹۰</td>
</tr>
<tr>
<td>۱۰۰</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ولتاژ اعمالی (kV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰۵۰</td>
</tr>
<tr>
<td>۰۶۰</td>
</tr>
<tr>
<td>۰۷۰</td>
</tr>
<tr>
<td>۰۸۰</td>
</tr>
<tr>
<td>۰۹۰</td>
</tr>
</tbody>
</table>
شکل ۴. اثر قطر سوزن سرنگ بر ولتاژ بحرانی (طول سوزن سرنگ معادل ۷/۵ cm).

تیلو خارج می‌شود. شکل ۳(ب) لحظه غلبه نیروهای الکتروستاتیک را بر نیروی کشش سطحی قطره نشان می‌دهد. در این لحظه، جنبش شنیدار از نوک مخروط تیلو تکیه گرفت و در انتهای سوزن سرنگ، خارج شده و جریان الکتروسیس آغاز می‌شود. شکل ۴ اثر قطر سوزن سرنگ بر ولتاژ بحرانی نشان می‌دهد. افزایش قطر سوزن از ۷/۵ به ۹/۵ cm در مخروط تیلو خارج شده است.

شکل ۵. تکیه گرفتگی نیروی بکشش سطحی قطره در تعداد است و (ب) لحظه رسیدن به ولتاژ حد بحرانی. در این لحظه، نیروهای الکتروستاتیک بر نیروی بکشش سطحی قطره غلبه کرده و یک جت برفشار از نوک مخروط تیلو خارج شده است.
عوامل بارهای سطحی الکتریکی در تک کس سنگ، کمتر تشکیل شده و باعث کمتر شدن نیروهای الکتروستاتیک برای غلبه بر کشش سطحی قطره شده‌اند. به همین دلیل به اعمال ونزاپ بیشتری برای تشکیل طول تایب سوزن برای 75 cm باعث افزایش ونزاپ بحرانی به ۶۳۰۰ به ۷۹۰۰ شد. مدل تیتر نیز مطابق با افزایش قطر سوزن، افزایش ونزاپ بحرانی را پیش بینی می‌کند. با افزایش قطر سوزن و نایب ماندن سایر

شکل ۶ تصویر نانو الیاف PAN الکترولیتر شده در طول تایب سوزن برای ۷۵ cm و قطرهای مختلف سوزن با بزرگنمایی ۵۰۰۰X (الف) ۵۰ X (د) ۱۸/۶ mm (ج) ۷۵/۴۰، (ب) ۱۰۰/۱۰۷ و (و) ۱۰۹/۸X (ه).
بارها به مقدار لازمه برای خونهای تروهات الکترولیتی بر کش سطحی مایع و خارج شدن جت بر فشار پلیمری نیاز است.

برای بررسی اثر قطع سوزن سریکی بر مقدار توپلید نانوالیاف، آزمایش‌های الکترولیتی طبق جدول ۱ در ولتاژ ۱۲۵ kV انجام شد. در شکل ۱ اثر قطع سوزن سریکی بر مقدار توپلید نانوالیاف الکترولیتی شده در این شرایط نشان داده شده است. افزایش قطع سوزن از ۵/۹ mm به ۸/۹ سوزن از ۲/۱۵ mg به ۸/۹ mg باعث کاهش مقدار تولید از ۱۴۵ mg در مدت زمان مسابقه الکترولیتی شده است. به عبارت دیگر، کاهش قطع سوزن از ۵/۹ mm به ۸/۹ mm باعث افزایش نانوالیاف به مقدار ۲۰ درصد خواهد شد.

شکل ۱ تصویر نانوالیاف الکترولیتی شده را در قطرهای PAN متفاوت سوزن و ولتاژ تابی که با استفاده از شکل ۶ رسم شده، تغییرات قطر ایفای را در برای تغییر قطر سوزن نشان می‌دهد. نتایج حاکی از آن است که تغییر در قطر سوزن سریکی اثر معتبری بر میانگین و توزیع قطرات نانوالیاف داشته است. نتایج حاکی از آن است که تغییر سریکی به طرف سوزن سریکی اثر معتبری بر میانگین و توزیع قطرات نانوالیاف داشته است.

فرآیند خوراک دهی محلول پلیمری به درون سوزن سریکی می‌شد.

یک طول سوزن سریکی
برای آرزیابی اثر طول سوزن سریکی بر مقدار توپلید نانوالیاف، آزمایش‌های الکترولیتی طبق جدول ۲ در قطرات سوزن سریکی معلل ۷/۸ mm و گرفته محلول برای ۱۵ دقیقه و ۱۵ ثانیه انجام شد. یک در انجام برای تغییر ونی رجحی

شکل ۲ تغییرات قطرات نانوالیاف PAN در برای تغییر قطر سوزن (غلفت) می‌شد.

شکل ۳ تغییرات قطرات نانوالیاف PAN در برای تغییر قطر سوزن (غلفت) می‌شد.
شکل 10 تصویر نانو الیاف PAN الکترتروپی شده در قطره‌ای سوزن سری‌گمایی ۲۵۰۰ mm و طول‌های متغیر سوزن با بلندی مایع. (الف) ۱، (ب) ۲، (ج) ۳ dm، (ه) ۷.۵ cm.
جدول ۲. شرایط الکتروروسی برا ی مشخص کردن اثر طول سوزن PAN

<table>
<thead>
<tr>
<th>قطر سوزن ریسنده (μm)</th>
<th>طول سوزن سرگن (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>طول</th>
<th>قطر</th>
<th>نتیجه گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>0.77</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>0.79</td>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>

در این بررسی، برای الکتروروسیب نانو الیاف با محلول ۱۵ درصد و وزنی استفاده شد. افزایش ولتاژ از ۳۰ کیلو ولت (kV) تا ۷۰ کیلو ولت (kV) باعث تغییر قطع نانو الیاف حاصل افزایش داد، سپس در حالت دوم از تعداد ریسنده بیشتر برای افزایش پیشنهاد مقدار تولید نانو الیاف با افزایش طول سوزن. بنابراین، تغییرات محلول و ولتاژ افزایش قطع نانو الیاف حاصل استفاده کرد.
محل منشأ جفت سرعت تشكیل و همراه جفت منتقل شوند. بدین ترتیب، می توان بدون تغییر در قطر نهایی جفت حاصل، مقدار تولید را در فرآیند الکتروبریزی به طور قابل ملاحظه ای افزایش داد. کاهش قطر سوزن از 0.59 mm به 0.5 mm در طول نامائش سوزن معادل 0.75 cm برحایی از 0.75 mm V به 0.5 mm V، 0.75 mm به 0.5 mm V، باعث کاهش ولتاژ برحایی از 0.3 cm مورد بررسی قرار گرفت، می توان به مقدار قابل ملاحظه ای سوزن تولید نامائش با کاهش الکتروبریزی افزایش داد.