ساخت و بررسی عملکرد جداسازی و خواص ضدگرفتگی غشای نانوفیلتری ماتریس ترکیبی بر پایه پلی‌اتر سولفون دارای نانوذرات کبالت فریت

نوع مقاله : پژوهشی

نویسندگان

اراک، دانشگاه اراک، دانشکده فنی و مهندسی، گروه مهندسی شیمی، کد پستی 8349-8-138156

چکیده

فرضیه: در این مطالعه غشاهای ماتریس ترکیبی بر پایه پلی‌‌اتر سولفون دارای نانوذرات کبالت فریت با روش ریخته‌گیری محلول پلیمری و غوطه‌وری در حمام آب تهیه شدند.
روش‌ها: اثر غلظت نانوذرات کبالت فریت تهیه‌شده در محلول پلیمری بر شکل‌شناسی و عملکرد جداسازی غشا بررسی شد. برای ارزیابی غشاهای ساخته‌شده، میکروسکوپی‌های الکترونی پویشی (SEM) و نیروی اتمی (AFM)، پراش پرتو X (XRD)، طیف‌سنجی زیر‌قرمز (FTIR)، اندازه‌گیری تخلخل، زاویه تماس آب، شار آب، پس‌زنی نمک سدیم سولفات و بررسی قابلیت غشا در برابر گرفتگی انجام شد.
یافته‌ها: عکس‌های SEM از سطح غشا نشان داد، نانوذرات کبالت فریت طی فرایند ساخت غشا، خود‌به‌خود به سطح مشترک غشا-آب مهاجرت می‌کنند تا انرژی بین‌سطحی را کاهش دهند. بررسی عکس‌های SEM،‌ ساختار غشایی نامتقارن با لایه بالایی چگال و زیرلایه متخلخل با ساختار کانال‌های انگشتمانند را نشان داد. استفاده از نانوذرات کبالت فریت در ماتریس غشا باعث کاهش زاویه تماس آب از مقدار °71 تا °48 شد. نتایج عکس‌های AFM حاکی از کاهش زبری غشاهای ماتریس ترکیبی در مقایسه با غشای خالص بود که به بهبود خواص ضدگرفتگی غشا در پس‌زنی پروتئین منجر شد. شار آب خالص عبوری از غشا در ابتدا با جادادن نانوذراتافزایش یافته و در غلظت بیش %1 وزنی به‌دلیل کلوخگی نانوذرات، کاهش یافت. با افزودن نانوذرات درصد پس‌زنی نمک سدیم سولفات از %60 برای غشای خالص تا حدود %80 برای غشای دارای %1 وزنی نانوذرات کبالت فریت افزایش یافت. غشای ماتریس ترکیبی دارای %1 وزنی نانوذرات کبالت فریت بهترین عملکرد را در مقایسه با سایر غشاها نشان داد.


کلیدواژه‌ها


عنوان مقاله [English]

Fabrication and Investigation of Separation Performance and Antifouling Properties of Mixed Matrix PES-Based Nanofiltration Membrane Containing Cobalt-Ferrite Nanoparticles

نویسندگان [English]

  • Farhad Zareei
  • Samaneh Bandehali
  • Mohammad Ebrahimi
  • Sayed Mohsen Hosseini
Department of Chemical Engineering, Faculty of Engineering, Arak University, Postal Code 138156-8-8349, Arak, Iran
چکیده [English]

Hypothesis: Mixed matrix polyether sulfone (PES)-based membranes, containing cobalt-ferrite nanoparticles, were prepared by polymer solution casting technique through phase inversion method in water bath.
Methods: The concentration effect of CoFe2O4 nanoparticles, synthesized in polymeric solution, on the morphology and separation performance was studied. Scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), porosity measurement, water contact angle, water flux, Na2SO4 rejection as well as membrane antifouling ability were used to characterize the membrane.
Findings: The SEM images showed the movement of NPs toward water-membrane interface to reduce surface energy during the fabrication process. The SEM images also showed an asymmetric structure with a dense active layer and a porous sub-layer with finger-like channels for the prepared membranes. The use of cobalt ferrite nanoparticles in the membrane matrix decreased the water contact angle from 71° to 48°. The results of AFM images also showed a smoother surface for the prepared mixed matrix membranes compared to the bare ones, which improved the membrane antifouling property in BSA rejection. Pure water flux (PWF) was initially enhanced by incorporation of cobalt ferrite NPs and then decreased by up to 1 wt% NPs due to NPs agglomeration. Moreover, Na2SO4 salt rejection increased from 60% for the neat membrane to 80% for the modified ones with 1.0 wt% cobalt-ferrite nanoparticles. The mixed matrix membrane containing 1.0 wt% cobalt-ferrite nanoparticles showed better performance compared to others.

کلیدواژه‌ها [English]

  • polymeric membrane
  • nanofiltration
  • cobalt-ferrite nanoparticles
  • purity
  • antifouling ability
  • separation performance
  1. Hosseini S.M., Nemati M., and Rafiei N., Surface Modification of Cation Exchange Membranes Using Chitosan-co-PANI/Graphene Oxide Nanocomposite Layer, Iran. J. Polym. Sci. Technol. (Pertsian), 31, 435-446, 2019.
  2. Jafarzadeh Y., Mirzababaei M., Shahbazi M.J., Ghofrani B., Esmaeili E., Rezaei N., and Moradi M., Preparation, Characterization and Analysis of Fouling Mechanisms of TiO2-Embedded PVDF Membranes, Iran. J. Polym. Sci. Technol. (Pertsian), 29, 543-558, 2017.
  3. Monsef K., Homayoonfal M., and Davar F., Modification of Structural Properties of Nanocomposite Membranes for Improving Dye Separation from Textile Effluents, Iran. J. Polym. Sci. Technol. (Pertsian), 31, 475-492, 2019.
  4. You S.J., Semblante G.U., Lu S.C., Damodar R.A., and Wei T.C., Evaluation of the Antifouling and Photocatalytic Properties of Poly(vinylidene fluoride) Plasma-Grafted Poly(acrylic acid) Membrane with Self-Assembled TiO2, J. Hazard. Mater., 237, 10-19, 2012.
  5. Shokri E., Yegani R., and Kazemian N., A PSF/Amino Acid-Modified Montmorillonite Mixed Matrix Membrane for Arsenic Removal from Water: Preparation and Evaluation of Its Properties, Iran. J. Polym. Sci. Technol. (Pertsian), 30, 75-88, 2017.
  6. Shi F., Ma Y., Ma J., Wang P., and Sun W., Preparation and Characterization of PVDF/TiO2 Hybrid Membranes with Different Dosage of Nano-TiO2, J. Membr. Sci., 389, 522-531, 2012.
  7. Razmjou A., Mansouri J., and Chen V., The Effects of Mechanical and Chemical Modification of TiO2 Nanoparticles on the Surface Chemistry, Structure and Fouling Performance of PES Ultrafiltration Membranes, J. Membr. Sci., 378, 73-84, 2011.
  8. Leong S., Razmjou A., Wang K., Hapgood K., Zhang X., and Wang H., TiO2 Based Photocatalytic Membranes: A Review, J. Membr. Sci., 472, 167-184, 2014.
  9. Bali Eslami A., Peyravi M., Jahanshahi M., and Hosseinpour H., Fabrication and Investigation of Polyamine Thin Film Composite Membrane based on Poly(2,5-benzimidazole) with High Chemical Stability, Iran. J. Polym. Sci. Technol. (Pertsian), 31, 551-561, 1397.
  10. Shi Q., Su Y., Zhu S., Li C., Zhao Y., and Jian Z., A Facile Method for Synthesis of Pegylated Polyethersulfone and Its Application in Fabrication of Antifouling Ultrafiltration Membrane, J. Membr. Sci., 303, 204–212, 2007.
  11. Rajabi H., Ghaemi N., Madaeni S.S., Daraei P., Astinchap B., Zinadini S., and Razavizadeh S.H., Nano-Zno Embedded Mixed Matrix Polyethersulfone (PES) Membrane: Influence of Nanofiller Shape on Characterization and Fouling Resistance, Appl. Surf. Sci., 349, 66-77, 2015.
  12. Peyravi M., Rahimpour A., Jahanshahi M., Javadi A., and Shockravi A., Tailoring the Surface Properties of PES Ultrafiltration Membranes to Reduce the Fouling Resistance Using Synthesized Hydrophilic Copolymer, Micropor. Mesopor.Mater., 160, 114-125, 2012.
  13. Moghimifar V., Esmaili Livari A., Raisi A., and Aroujalian A., Enhancing the Antifouling Property of Polyethersulfone Ultrafiltration Membranes Using Nax Zeolite and Titanium Oxide Nanoparticles, RSC Adv., 5, 55964-55976, 2015.
  14. Noeiaghaei T., Kim J.O., and Chae S.R., Recent Advances In Nano-Hybrid Membranes for Advanced Water Treatment, Curr. Org. Chem., 18, 2381-2404, 2014.
  15. Ng L.Y., Mohammad A.W., Leo C.P., and Hilal N., Polymeric Membranes Incorporated with Metal/Metal Oxide Nanoparticles: A Comprehensive Review, Desalination, 308, 15-33, 2013.
  16. Rana D. and Matsuura T., Surface Modifications for Antifouling Membranes, Chem. Rev., 110, 2448-2471, 2010.
  17. Muhamad M.S., Salim M.R., and Lau W.J., Preparation and Characterization of PES/SiO2 Composite Ultrafiltration Membrane for Advanced Water Treatment, Korean J. Chem. Eng., 32, 2319-2329, 2015.
  18. Shen J., Ruan H., Wu L., and Gao C., Preparation and Characterization of PES–SiO2 Organic–Inorganic Composite Ultrafiltration Membrane for Raw Water Pretreatment, Chem. Eng. J., 168, 1272–1278, 2011.
  19. Leng C., Wei J., Liu Z., Xiong R., Pan C., and Shi J., Facile Synthesis of PANI-Modified CoFe2O4–TiO2 Hierarchical Flower-Like Nanoarchitectures with High Photocatalytic Activity, J. Nanopart. Res., 15, 1643-1654, 2013.
  20. Yao Y., Qin J., Chen H., Wei F., Liu X., Wang J., and Wang S., One-Pot Approach for Synthesis Of N-Doped TiO2/ZnFe2O4 Hybrid as an Efficient Photocatalyst for Degradation of Aqueous Organic Pollutants, J. Hazard. Mater., 291, 28-37, 2015.
  21. Chang S. and Haoxue Q., Tuning Magnetic Properties of Magnetic Recording Media Cobalt Ferrite Nanoparticles by Co-Precipitation Method, IEEE Trans. Magn., 108, 1-4, 2009.
  22. Zhao L.J., Zhang H.J., and Xing Y., Studies on the Magnetism of Cobalt Ferrite Nanocrystals Synthesized by Hydrothermal Method, J. Solid State Chem., 181, 254-252, 2008.
  23. Maaz K., Mumtaz A., and Hasanaian S.K., Synthesis and Magnetic Properties of Cobalt Ferrite Nanoparticles Prepared by Chemical Route, J. Magn. Magn. Mater., 308, 289- 291, 2007.
  24. Vinunisha P.A., Mely L.A., Jeronsia J.E., Raja K., Tamilarsi D.Q.S., Fernandez A.C., Krishnan S., and Das S.J., Investigation of Optical, Electrical and Magnetic Properties of Cobalt Ferrite Nanoparticles by Naïve Co-Precipitation Technique, Opt. Spektrosk., 127, 9917-9925, 2016.
  25. Veiseh O., Guun J.W., and Zhang M., Design and Fabrication of Magnetic Nanoparticles for Targeted Drug Delivery and Imaging, Adv. Drug Delivery Rev., 62, 284-304, 2010.
  26. Zhang S., Niu H., Zhao X., and Shi Y., Arsenite and Arsenate Adsorption on Co-Precipitated Bimetal Oxide Magnetic Nanomaterials: MnFe2O4 And CoFe2O4, Chem. Eng. J., 158, 599-607, 2010.
  27. Jainae K., Sanuwong K., Nauangjamnong J., Sukpirom N., and Unob F., Extraction and Recovery of Precious Metal Ions in Wastewater by Polystyrene- Coated Magnetic Particles Functionalized with 2-(3-(2-Aminoethylthiol)Propylthio) Ethanamine, Chem. Eng. J., 160, 586-593, 2010.
  28. Qiu W., Yang D., Xu J., Hong B., Jin H., Jin D., Peng X., Li J., Ge H., and Wang X., Efficient Removal of Cr(VI) by Magnetically Separable CoFe2O4/Activated Carbon Composite, J. Alloys Compd., 687, 179-184, 2016.
  29. Song B.Y., Eom Y., and Lee T.G., Removal and Recovery of Mercury from Aqueous Solution Using Magnetic Silica Nanocomposite, Appl. Surf. Sci., 257, 4754-4759, 2011.
  30. Kamranifar M., Allahresani A., and Naghizadeh A., Synthesis and Characterizations of a Novel CoFe2O4@Cus Magnetic Nanocomposite and Investigation of Its Efficiency for Photocatalytic Degradation of Penicillin G Antibiotic in Simulated Wastewater, J. Hazard. Mater., 366, 545-555, 2019.
  31. Zangeneh H., Zinatizadeh A.A., Zinadini S., Feyzi M., and Bahnemann D.W., Preparation and Characterization of a Novel Photocatalytic Self-Cleaning PES Nanofiltration Membrane by Embedding a Visible-Driven Photocatalyst Boron Doped-TiO2-SiO2/CoFe2O4 Nanoparticles, J. Alloys Compd., 209, 764-775, 2019.
  32. Heidary F., Nemati Kharat A., and Khodabakhshi A.R., Preparation, Characterization and Transport Properties of Novel Cation-Exchange Nanocomposite Membrane Containing BaFe12O19 Nanoparticles, J. Cluster Sci., 27, 193-211, 2016.
  33. Hosseini S. M., Rafiei N., Salabat A., and Ahmadi A., Fabrication of New Type of Barium Ferrite/Copper Oxide Composite Nanoparticles Blended Polyvinylchloride Based Heterogeneous Ion Exchange Membrane, Arabian J. Chem., 13, 2470-2482, 2020.
  34. Nikumbh A.K., Pawar R.A., Nighot D.V., Gugale G.S., Sangale M.D., Khanvilkar M.B., and Nagawade A.V., Structural, Electrical, Magnetic and Dielectric Properties of Rare-Erth Substituted Cobalt Ferrite Nanoparticles Synthesized by the Co-Precipitation Method, J. Magn. Magn. Mater., 355, 201-209, 2014.
  35. Eckertova L., Physics of Thin Films, 2nd ed., Plenum, 1986.
  36. Vatanpour V., Madaeni S.S., Moradian R., Zinadini S., and Astinchap B., Novel Antibifouling Nanofiltration Polyethersulfone Membrane Fabricated from Embedding TiO2 Coated Multiwalled Carbon Nanotube, Sep. Purif. Technol., 90, 69-82, 2012.
  37. Bagheripour E., Moghadassi A., and Hosseini S.M., Preparation of Mixed Matrix PES-Based Nanofiltration Membrane Filled with PANI-co-MWCNT Composite Nanoparticles, Korean J. Chem. Eng., 33, 1462-1471, 2016.
  38. Hamid N.A.A., Ismail A.F., Matsuura T., Zularisam A.W., Lau W.J., Yuliwati E., and Abdullah M.S., Morphological and Separation Performance Study of Polysulfone/Titanium Dioxide (PSF/TiO2) Ultrafiltration Membranes for Humic Acid Removal, Desalination, 273, 85-92, 2011.
  39. Daneshvar N., Aleboyeh A., and Khataee A.R., The Evaluation of Electrical Energy per Order (EEO) for Photooxidative Decolorization of Four Textile Dye Solutions by the Kinetic Model, Chemosphere, 59, 761-767, 2005.
  40. Vatanpour V., Madaeni S.S., Moradian R., Zinadini S., and Astinchap B., Fabrication and Characterization of Novel Antifouling Nanofiltration Membrane Prepared from Oxidized Multiwalled Carbon Nanotube/Polyethersulfone Nanocomposite, J. Membr. Sci., 375, 284-294, 2011.
  41. Zinadini S., Zinatizadeh A.A., Rahimi M., Vatanpour V., Zangeneh H., and Beygzadeh M., Novel High Flux Antifouling Nanofiltration Membranes for Color Removal Containing Carboxymethyl Chitosan Coated Fe3O4 Nanoparticles, Desalination, 349, 145-154, 2014.
  1. Madaeni S.S., Moahamadi Sarab Badieh M., Vatanpour V., and Ghaemi N., Effect of Titanium Dioxide Nanoparticles on Polydimethylsiloxane/Polyethersulfone Composite Membranes for Gas Separation, Polym. Eng. Sci., 52, 2664-2674, 2012.
  2. Hosseini S.M., Bagheripour E., and Ansari M., Adapting the Performance and Physico-Chemical Properties of PES Nanofiltration Membrane by Using of Magnesium Oxide Nanoparticles, Korean J. Chem. Eng., 34, 1774-1780, 2017.
  3. Sanpo N., Berndt C.C., Wen C., and Wang J., Transition Metal-Substituted Cobalt Ferrite Nanoparticles for Biomedical Applications, Acta Biomater., 9, 5830-5837, 2013.
  4. Celik E. and Choi H., Protein Fouling Behavior of Carbon Nanotube/Polyethersulfone Composite Membranes During Water Filtration, Water Res., 45, 5287-5294, 2011.
  5. Chao D., Yu Y.I., and Chen P., Zirconium/Polyvinyl Alcohol Modified Flat-Sheet Polyvinyldene Fluoride Membrane for Decontamination of Arsenic: Material Design and Optimization, Study of Mechanisms, and Application Prospects, Chemosphere, 155, 630-639, 2016.
  6. Zinadini S., Zinatizadeh A.A., Rahimi M., and Vatanpour V., Magnetic Field-Augmented Coagulation Bath During Phase Inversion for Preparation of ZnFe2O4/SiO2/PES Nanofiltration Membrane: A Novel Method for Flux Enhancement and Fouling Resistance, J. Ind. Eng. Chem., 46, 9-18, 2017.
  7. Rajabi H., Ghaemi N., Madaeni S.S., Daraei P., Astinchap B., and Zinadini S., Nano-ZnO Embedded Mixed Matrix Polyethersulfone (PES) Membrane: Influence of Nanofiller Shape on Characterization and Fouling Resistance, Appl. Surf. Sci., 349, 66-77, 2015.
  8. Rahimi Z., Zinatizadeh A.A.L., and Zinadini S., Preparation of High Antibiofouling Amino Functionalized MWCNTs/PES Nanocomposite Ultrafiltration Membrane for Application in Membrane Bioreactor, J. Ind. Eng. Chem., 29, 366-374, 2015.
  9. Vrijenhoek E.M., Hong S., and Elimelech M., Influence of Membrane Surface Properties on Initial Rate of Colloidal Fouling of Reverse Osmosis and Nanofiltration Membranes, Chem. Rev., 188, 115-128, 2001.
  10. Vatanpour V., Madaeni S.S., Rajabi L., Zinadini S., and Derakhshan A.A., Boehmite Nanoparticles as A New Nanofiller for Preparation of Antifouling Mixed Matrix Membranes, J. Membr. Sci., 410, 132-143, 2012.
  11. Gholami N. and Mahdavi H., Nanofiltration Composite Membranes of Polyethersulfone and Graphene Oxide and Sulfonated Graphene Oxide, Adv. Polym. Technol., 37, 3529-3541, 2018.
  12. Bagheripour E., Moghadassi A.R., and Hosseini S.M., Fabrication of Polyvinyl Chloride Based Nanocomposite Nanofiltration Membrane: Investigation of SDS/Al2O3 Nanoparticle Concentration and Solvent Ratio Effects, Asia-Pac. J. Chem. Eng., 10, 791-798, 2015.
  13. Abdi G., Alizadeh A., Zinadini S., and Moradi G., Removal of Dye And Heavy Metal Ion Using a Novel Synthetic Polyethersulfone Nanofiltration Membrane Modified by Magnetic Graphene Oxide/Metformin Hybrid, J. Membr. Sci., 552, 326-335, 2018.
  14. Zhang Q., Fan L., Yang Z., Zhang R., Liu Y.-N., He M., Su Y., and Jiang Z., Loose Nanofiltration Membrane for Dye/Salt Separation Through Interfacial Polymerization with In-Situ Generated TiO2 Nanoparticles, Appl. Surf. Sci., 410, 494-504, 2017.
  15. He Y., Tang Y.P., Ma D., and Chung T.S., UiO-66 Incorporated Thin-Film Nanocomposite Membranes for Efficient Selenium and Arsenic Removal, J. Membr. Sci., 541, 262-270, 2017.
  16. Wang Y., Zhu J., Dong G., Zhang Y., Guo N., and Liu J., Sulfonated Halloysite Nanotubes/Polyethersulfone Nanocomposite Membrane for Efficient Dye Purification, Sep. Purif. Technol., 150, 243-251, 2015.