مروری بر هیدروژل‌‌های درجا ژل‌شونده بر پایه پلیمرهای زیست‌تخریب‌پذیر در دارورسانی مؤثر چشمی

نوع مقاله : مروری

نویسندگان

1 تبریز، دانشگاه تبریز، دانشکده مهندسی شیمی و نفت، گروه مهندسی شیمی، کد پستی 16471-51666

2 تبریز، دانشگاه علوم پزشکی تبریز، مرکز تحقیقات ریزفناوری دارویی، کد پستی 65811-51656

چکیده

در زمینه چشم پزشکی، با وجود دسترسی به داروهای مختلف در درمان بیماری‏‌های چشمی، با توجه به فیزیولوژی و کالبدشناسی این اندام، هنوز راهبرد دارورسانی مناسبی به‌دست نیامده است. سامانه‌های جدید دارورسانی چشمی برای دستیابی به سطح درمانی بلند‌مدت طراحی شده‌اند. هیدروژل‏‌ها به‌دلیل داشتن خواص منحصربه‌فرد به‌طور گسترده در سامانه‌های دارورسانی استفاده شده‌اند. در مقایسه با روش‌های جراحی، استفاده از هیدروژل‌های درجا با تزریق در محل، خطر عوارض مرتبط با روش‌های جراحی تهاجمی را کاهش می‌دهد و آن را به گزینه ایمن‌تری برای تحویل دارو تبدیل می‌کند. هیدروژل‏های درجا ژل‌شونده یکی از دسته‏‌های مهم مواد پلیمری استفاده‌شده برای سامانه‌‏های دارورسانی چشمی هستند. هیدروژل‌های درجا ژل‌‌شونده این قابلیت را دارند که در بافت‌های چشمی تحت انتقال فاز قرار گرفته و از حالت مایع به ژل گران‌روکشسان تبدیل شوند و بنابراین می‌‏توانند ماندگاری داروها را طولانی‌تر کرده و زیست‌دسترس‌پذیری آن‌ها را در بافت چشمی بهبود بخشند. پلیمرها مواد اصلی تهیه هیدروژل‏‌های درجا ژل‌شونده هستند. پلیمرهای طبیعی به‌دلیل زیست‌تخریب‌پذیری و زیست‌سازگاری به‌طور گسترده در دارورسانی چشمی مطالعه و بررسی شده‌اند. پلیمرهای طبیعی رایج برای تهیه هیدروژل‌ها شامل کیتوسان، نشاسته، آلژینات، فیبرین، کلاژن، ژلاتین، هیالورونیک اسید و دکستران هستند. هدف این مقاله بررسی و بحث درباره توسعه اخیر هیدروژل‏های درجا ژل‌شونده براساس پلیمرهای طبیعی به‌عنوان سامانه‌‏های دارورسانی چشمی پیشرفته است. همچنین برای دستیابی به درک عمیق‌تر از قابلیت هیدروژل‌های درجا ژل‌‌شونده به‌عنوان گزینه جدید درمان چشمی، زیست‌سازگاری و زیست‌تخریب‌پذیری آن‌ها در سامانه‌های دارورسانی چشمی بحث شدند. با درنظرگرفتن برتری‌های ویژه‏ نانوفناوری در سامانه‌های دارورسانی، ترکیب هیدروژل‌های چشمی با نانوفناوری و نیز هیدروژل‌های تجاری موجود به‌اختصار بحث شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

In situ gelling hydrogels based on biodegradable polymers for effective ocular drug delivery: A review

نویسندگان [English]

  • Golnaz Shajari 1
  • Marziyeh Fathi 2
  • Hamid Erfan-Niya 1
1 Tabriz University
2 Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences
چکیده [English]

In the field of ophthalmology, despite the existence of various drugs for the treatment of ocular diseases, an appropriate drug delivery strategy has not been achieved yet due to the special physiology and anatomy of this organ. New ocular drug delivery systems (DDSs) have been designed to achieve long-term therapeutic levels. Hydrogels have been widely used in drug delivery systems due to their unique properties. In situ gelling hydrogels are one of the important materials used for ocular DDSs. The use of in situ hydrogels through site injection reduces the risk of complications associated with invasive surgical procedures, making it a safer option for ocular drug delivery. Also, in-situ gelling hydrogels have the ability to undergo phase transition in ocular tissues and change from liquid to viscoelastic gel state, and thus can prolong the shelf life of drugs and improve their bioavailability in ocular tissue. Polymers are the main raw materials for the preparation of in situ gelling hydrogels. Natural polymers have been widely studied and investigated in ocular DDS due to their biodegradability and biocompatibility. Polymers are the main raw materials for preparing in situ gelling hydrogels. Common natural polymers for hydrogel preparation include chitosan, starch, alginate, fibrin, collagen, gelatin, hyaluronic acid and dextran. This paper aims to review and discuss the recent development of in situ gelling hydrogels based on natural polymers as advanced ocular DDSs. This review also summarizes various in situ gelling ocular hydrogels responsive to different stimuli such as temperature, pH, and ion. Also to achieve a deeper understanding of in situ gelling hydrogels’ potential as new ocular treatment option, their biocompatibility and biodegradability will be discussed in ocular DDSs. Considering the special advantages of nanotechnology in DDSs, the combination of ophthalmic hydrogels with nanotechnology as well as available commercial hydrogels will be briefly discussed.

کلیدواژه‌ها [English]

  • In situ gelling hydrogel
  • Ocular drug delivery
  • Natural polymers
  • Biodegradable
  • Gelation process
  1. Fathi M., Barar J., Aghanejad A., and Omidi Y., Hydrogels for Ocular Drug Delivery and Tissue Engineering, Bioimpacts, 5, 159-164, 2015.
  2. Addo E., Bamiro O.A., and Siwale R., Anatomy of the Eye and Common Diseases Affecting the Eye, In Ocular Drug Delivery: Advances, Challenges and Applications, Springer, 11-25, 2016.
  3. Willoughby C.E., Ponzin D., Ferrari S., Lobo A., Landau K., and Omidi Y., Anatomy and Physiology of the Human Eye: Effects of Mucopolysaccharidoses Disease on Structure and Function–A Review, Exp. Ophthalmol., 38, 2-11, 2010.
  4. Das S., Behera A., Kumar L.A., Padhy G.K., and Singh U.K., Ocular Drug Delivery With Special Reference to Natural Polymer, Pharm. Negat. Results, 2856-2862, 2022.
  5. Ranade V.V. and Cannon J.B., Nanoscience and Nanotechnology for Drug Delivery, In Drug Delivery Systems, 3rd ed., CRC, Boca Raton, FL, USA, 451-525, 2011.
  6. Diebolda, Y., Jarrin M., Saez Victoria., Carvalho E.L.S., Orea M., Calonge M., Seijo B., and Alonso M.J., Ocular Drug Delivery by Liposome-Chitosan Nanoparticle Complexes (LCS-NP), Biomaterials, 28, 1553-1564, 2007.
  7. Rathod U., Shah S., Tiwari N., and Patani P., Ocular Drug Delivery: An Overview, Pharm. Negat. Results, 2363-2369, 2022.
  8. Patel P., Shastri D., Shelat P., and Shukla A., Ophthalmic Drug Delivery System: Challenges and Approaches, Rev. Pharm., 1, 113, 2010.
  9. Janoria K.G., Gunda S., Boddu S.H., and Mitra A.K., Novel Approaches to Retinal Drug Delivery, Expert Opin. Drug Deliv., 4, 371-388, 2007.
  10. Barar J., Aghanejad A., Fathi M., and Omidi Y., Advanced Drug Delivery and Targeting Technologies for the Ocular Diseases, BioImpacts, 6, 49, 2016.
  11. Almeida H., Amaral M.H., Lobão P., Silva A.C., and Loboa J.M.S., Applications of Polymeric and Lipid Nanoparticles in Ophthalmic Pharmaceutical Formulations: Present and Future Considerations, Pharm. Pharm. Sci., 17, 278-293, 2014.
  12. Makwana S., Patel V., and Parmar S., Development and Characterization of In-Situ Gel for Ophthalmic Formulation Containing Ciprofloxacin Hydrochloride, Results in Pharma Sci., 6, 1-6, 2016.
  13. Venkatesh P., Review Article on In-Situ of Ocular Drug Delivery System, J. Health Sci., 08-11, 2022.
  14. Saettone M.F. and Salminen L., Ocular Inserts for Topical Delivery, Drug Deliv. Rev., 16, 95-106, 1995.
  15. Bourges J., Bloquel C., Thomas A., Froussart F., Bochot A., Azan F., Gurny R., BenEzra D., and Behar-Cohen F., Intraocular Implants for Extended Drug Delivery: Therapeutic Applications, Drug Deliv. Rev., 58, 1182-1202, 2006.
  16. Mostafa M., Al Fatease A., Alany R.G., and Abdelkader H., Recent Advances of Ocular Drug Delivery Systems: Prominence of Ocular Implants for Chronic Eye Diseases, Pharmaceutics, 15, 1746, 2023.
  17. Wu Y., Liu Y., Li X., Kebebe D., Zhang B., and Ren J., Jun L., Jiawei L., Shouying D., and Zhidong L., Research Progress of In-Situ Gelling Ophthalmic Drug Delivery System, Asian J. Pharm. Sci., 14, 1-15, 2019.
  18. Jeong B., Kim S.W., and Bae Y.H., Thermosensitive Sol-Gel Reversible Hydrogels, Drug Deliv. Rev., 64, 154-162, 2012.
  19. Ullah F., Othman M.B.H., Javed F., Ahmad Z., and Akil H.M., Classification, Processing and Application of Hydrogels: A Review, Sci. Eng. C, 57, 414-433, 2015.
  20. Gupta P., Vermani K., and Garg S., Hydrogels: From Controlled Release to pH-Responsive Drug Delivery, Drug Discov. Today, 7, 569-579, 2002.
  21. Peppas N.A., Hydrogels and Drug Delivery, Opin. Colloid In. Sci., 2, 531-537, 1997.
  22. Geramipour M., Kurdtabar M., and Bardajee G.R., Synthesis and Characterization of Iron Magnetic Nanocomposite Hydrogel Based on Modified Sodium Carboxymethyl Cellulose Using Acrylamide and Acrylic Acid and Investigation of Drug Delivery Properties, Polym. J., 29, 265-275, 2016.
  23. Ganji F. and Vashegani F.E., Hydrogels in Controlled Drug Delivery Systems, Polym. J., 18, 63-88, 2009.
  24. Pakzad Y., Fathi M., Omidi Y., Mozafari M., and Zamanian A., Synthesis and Characterization of Timolol Maleate-Loaded Quaternized Chitosan-Based Thermosensitive Hydrogel: A Transparent Topical Ocular Delivery System for the Treatment of Glaucoma, J. Biol. Macromol., 159, 117-128, 2020.
  25. Huynh C.T., Nguyen M.K., and Lee D.S., Injectable Block Copolymer Hydrogels: Achievements and Future Challenges for Biomedical Applications, Macromolecules, 44, 6629-6636, 2011.
  26. Zhao W., Jin X., Cong Y., Liu Y., and Fu J., Degradable Natural Polymer Hydrogels for Articular Cartilage Tissue Engineering, Chem. Technol. Biotechnol., 88, 327-339, 2013.
  27. Fernandes P.A., Schmidt S., Zeiser M., Fery A., and Hellweg T., Swelling and Mechanical Properties of Polymer Gels with Cross-Linking Gradient, Soft Matter., 6, 3455-3458, 2010.
  28. Ahmed E.M., Hydrogel: Preparation, Characterization, and Applications: A Review, Adv. Res., 6, 105-121, 2015.
  29. Ziaei A.A., Erfan-Niya H., Fathi M., and Amiryaghoubi N., In Situ Forming Alginate/Gelatin Hybrid Hydrogels Containing Doxorubicin Loaded Chitosan/AuNPs Nanogels for the Local Therapy of Breast Cancer, J. Biol. Macromol., 246, 125640, 2023.
  30. Mahinroosta M., Farsangi Z.J., Allahverdi A., and Shakoori Z., Hydrogels as intelligent Materials: A Brief Review of Synthesis, Properties and Applications, Today Chem., 8, 42-55, 2018.
  31. Nayak A.K. and Das B., Introduction to Polymeric Gels, Polymeric Gels, Elsevier, 3-27, 2018.
  32. Mohamed M.A., Fallahi A., El.Sokkary A.M., Salehi S., Akl M.A., Jafari A., Tamayol A., Fenniri H., Khademhosseini A., Andreadis S.T., and Cheng C., Stimuli-Responsive Hydrogels for Manipulation of Cell Microenvironment: From Chemistry to Biofabrication Technology, Polym. Sci., 98, 101147, 2019.
  33. Carpi A., Progress in Molecular and Environmental Bioengineering: From Analysis and Modeling to Technology Applications, BoD–Books on Demand, 2011.
  34. Bi X., Liang A., In Situ-Forming Cross-Linking Hydrogel Systems: Chemistry and Biomedical Applications, Emerging Concepts in Analysis and Applications of Hydrogels, 86, 541-547, 2016.
  35. Bandawane A. and Saudagar R., A Review on Novel Drug Delivery System: A Recent Trend, Drug Deliv. Ther., 9, 517-521, 2019.
  36. Sirousazar M., Mechanism of Gentamicin Sulphate Release in Nanocomposite Hydrogel Drug Delivery Systems, Drug Deliv. Technol., 23, 619-621, 2013.
  37. Sanchez-Moreno P., Ortega-Vinuesa J.L., Peula-Garcia M., Marchal J.A., Boulaiz H., Smart Drug-Delivery Systems for Cancer Nanotherapy, Curr. Drug Targets, 19, 339-359, 2018.
  38. Abdollahipaynavandi M., Ebrahimi R., and Amiri A., Study of Loading and Releasing of Fluvoxamine in Hydrogels Prepared by Ultrasound Irradiation, J. Polym. Sci. Technol. (Persian), 28, 225-232, 2015.
  39. Matsumoto K., Kimura S.-i., Noguchi S., Itai S., Kondo H., and Iwao Y., Mechanism of Drug Release from Temperature-Sensitive Formulations Composed of Low-Melting-Point Microcrystalline Wax, Pharm. Sci., 108, 2086-2093, 2019.
  40. Maji S., Jerca V.V., Jerca F.A., and Hoogenboom R., Smart Polymeric Gels. Polymeric Gels, Elsevier, 179-230, 2018.
  41. Tamilvanan S., Venkateshan N., and Ludwig A., The Potential of Lipid-and Polymer-Based Drug Delivery Carriers for Eradicating Biofilm Consortia on Device-Related Nosocomial Infections, Control. Release, 128, 2-22, 2008.
  42. Huynh C.T., Nguyen M.K., and Lee D.S., Biodegradable pH/Temperature-Sensitive Oligo(β-amino ester urethane) Hydrogels for Controlled Release of Doxorubicin, Acta Biomater., 7, 3123-3130, 2011.
  43. Obara K., Ishihara M., Ozeki Y., Ishizuka T., Hayashi T., Nakamura S., Saito Y., Yura H., Matsui T., Hattori H., Takase B., Ishihara M., Kikuchi M., and Maehara T., Controlled Release of Paclitaxel from Photocrosslinked Chitosan Hydrogels and its Subsequent Effect on Subcutaneous Tumor Growth in Mice, Control. Release, 110, 79-89, 2005.
  44. Zhao L., Zhu L., Liu F., Liu C., Shan-Dan, Q. Wang, CL Zhang, Li J.L., Liu J.G., Qu X.Z. and Yang Z.Z, pH Triggered Injectable Amphiphilic Hydrogel Containing Doxorubicin and Paclit.Axel, J. Pharm., 410, 83-91, 2011.
  45. Vedadghavami A., Minooei F., Mohammadi M.H., Khetani S., Kolahchi A.R., Mashayekhan S., Vedadghavami A., Minooei F., Mohammadi M.H., Khetani S., Kolahchi A.R., Mashayekhan S., and Sanati-Nezhad A., Manufacturing of Hydrogel Biomaterials with Controlled Mechanical Properties for Tissue Engineering Applications, Acta Biomater., 62, 42-63, 2017.
  46. Haq M.A., Su Y., and Wang D., Mechanical Properties of PNIPAM Based Hydrogels: A Review, Sci. Eng. C, 70, 842-855, 2017.
  47. Lynch C.R., Kondiah P.P., Choonara Y.E., Du Toit L.C., Ally N., and Pillay V., Hydrogel Biomaterials for Application in Ocular Drug Delivery, Bioeng. Biotechnol., 8, 2020.
  48. Cheng Y.H., Tsai T.H., Jhan Y.Y., Chiu A.W.H., Tsai K.L., Chien C.S., Chiou S.H., and Liu C.J.L., Thermosensitive Chitosan-Based Hydrogel as a Topical Ocular Drug Delivery System of Latanoprost for Glaucoma Treatment, Polym., 144, 390-399, 2016.
  49. Liu W., Lee B.S., Mieler W.F., and Kang-Mieler J.J., Biodegradable Microsphere-Hydrogel Ocular Drug Delivery System for Controlled and Extended Release of Bioactive Aflibercept in Vitro, Eye Res., 44, 264-274, 2019.
  50. Luo Z., Jin L., Xu L., Zhang Z.L., Yu J., Shi S., Li X., and Chen H., Thermosensitive PEG–PCL–PEG (PECE) Hydrogel as an in Situ Gelling System for Ocular Drug Delivery of Diclofenac Sodium, Drug Deliv., 23, 63-68, 2016.
  51. Huang J., Wang W., Yu J., Yu X., Zheng Q., Peng F., He Z., Zhao W., Zhang Z., Li X., and Wang Q., Combination of Dexamethasone and Avastin® by Supramolecular Hydrogel Attenuates the Inflammatory Corneal Neovascularization in Rat Alkali Burn Model, Colloids Surf. B: Biointerfaces., 159, 241-250, 2017.
  52. Rajoria G. and Gupta A., In-Situ Gelling System: A Novel Approach for Ocular Drug Delivery, AJPTR, 2, 24-53, 2012.
  53. Dludla S.B., Mashabela L.T., Ng’andwe B., Makoni P.A., and Witika B.A., Current Advances in Nano-based and Polymeric Stimuli-Responsive Drug Delivery Targeting the Ocular Microenvironment: A Review and Envisaged Future Perspectives, Polymers, 14, 3580, 2022.
  54. Marefat Seyedlar R., Imani M., Atai M., and Nodehi A., Temperature-Responsive Hydrogels: Materials, Mechanisms and Biological Applications, Polym. J., 31, 211-237, 2.
  55. Song Y., Nagai N., Saijo S., Kaji H., Nishizawa M., and Abe T., In Situ Formation of Injectable Chitosan-Gelatin Hydrogels Through Double Crosslinking for Sustained Intraocular Drug Delivery, Sci. Eng. C, 88, 1-12, 2018.
  56. Vermonden T., Censi R., and Hennink W.E., Hydrogels for Protein Delivery, Rev., 112, 2853-2888, 2012.
  57. Wasupalli G.K. and Verma D., Injectable and Thermosensitive Nanofibrous Hydrogel for Bone Tissue Engineering, Sci. Eng. C, 107, 110343, 2020.
  58. Saravanan S., Vimalraj S., Thanikaivelan P., Banudevi S., and Manivasagam G., A Review on Injectable Chitosan/Beta Glycerophosphate Hydrogels for Bone Tissue Regeneration, J. Biol. Macromol., 121, 38-54, 2019.
  59. Iohara D., Okubo S., Anraku M., Uramatsu S., Shimamoto T., Uekama K., and Hirayama F., Hydrophobically Modified Polymer/α-Cyclodextrin Thermoresponsive Hydrogels for Use in Ocular Drug Delivery, Pharmaceutics., 14, 2740-2748, 2017.
  60. Nguyen D.D. and Lai J.Y., Advancing the Stimuli Response of Polymer-Based Drug Delivery Systems for Ocular Disease Treatment, Chem., 11, 6988-7008, 2020.
  61. Terreni E., Zucchetti E., Tampucci S., Burgalassi S., Monti D., and Chetoni P., Combination of Nanomicellar Technology and in Situ Gelling Polymer as Ocular Drug Delivery System (ODDS) for Cyclosporine-A, Pharmaceutics, 13, 192, 2021.
  62. Zhang Z., Yu J., Zhou Y., Zhang R., Song Q., and Lei L., and Li X., Supramolecular Nanofibers of Dexamethasone Derivatives to Form Hydrogel for Topical Ocular Drug Delivery, Colloids Surf. B: Biointerfaces., 164, 436-443, 2018.
  63. Ge Y., Zhang A., Sun R., Xu J., Yin T., and He H., Gou J., Kong J., Zhang and Y., and Tang X., Penetratin-Modified Lutein Nanoemulsion In-Situ Gel for the Treatment of Age-Related Macular Degeneration, Expert Opin. Drug Deliv., 17, 603-619, 2020.
  64. Iglesias N., Galbis E., Romero-Azogil L., Benito E., Lucas R., García- and Martín M.G., and de-Paz M.V., In-Depth Study into Polymeric Materials in Low-Density Gastroretentive Formulations, Pharmaceutics, 12, 636, 2020.
  65. Sharma M., Deohra A., Reddy K.R., and Sadhu V., Biocompatible In-Situ Gelling Polymer Hydrogels for Treating Ocular Infection. Methods in Microbiology, Elsevier, 46, 93-114, 2019.
  66. Kouchak M., Mahmoodzadeh M., and Farrahi F., Designing of a pH-Triggered Carbopol®/HPMC In Situ Gel for Ocular Delivery of Dorzolamide HCl: In Vitro, In Vivo, and Ex Vivo Evaluation, AAPS Pharm. Sci.Tech., 20, 1-8, 2019.
  67. Lehr C.-M., Lee Y.-H., and Lee V., Improved Ocular Penetration of Gentamicin by Mucoadhesive Polymer Polycarbophil in the Pigmented Rabbit, Ophthalmol. Vis. Sci., 35, 2809-2814, 1994.
  68. Shi L., Yang L., Chen J., Pei Y., Chen M., Hui B., and Li J., Preparation and Characterization of pH-Sensitive Hydrogel of Chitosan/Poly(acrylic acid)-co-Polymer, Biomater. Sci. Polym. Ed., 15, 465-474, 2004.
  69. Zamboulis , Nanaki S., Michailidou G., Koumentakou I., Lazaridou M., Ainali N.M., Xanthopoulou E., and Bikiaris D.N. Chitosan and Its Derivatives for Ocular Delivery Formulations: Recent Advances and Developments, Polymers, 12, 1519, 2020.
  70. Swift T., Swanson L., Geoghegan M., and Rimmer S., The pH-Responsive Behaviour of Poly(acrylic acid) in Aqueous Solution is Dependent on Molar mass, Soft Matter., 12, 2542-2549, 2016.
  71. Ali Y. and Lehmussaari K., Industrial Perspective in Ocular Drug Delivery, Drug Deliv. Rev., 58, 1258-1268, 2006.
  72. Gupta H., Jain S., Mathur R., Mishra P., Mishra A.K., and Velpandian T., Sustained Ocular Drug Delivery from a Temperature and pH Triggered Novel In Situ Gel System, Drug Deliv., 14, 507-515, 2007.
  73. Horvát G., Gyarmati B., Berkó S., Szabó-Révész P., Szilágyi B.Á., Szilágyi A., Soós J., Sandri G., Bonferoni M.C., Rossi S., Ferrari F., Caramella C., Csányi E., and Budai-Szűcs M., Thiolated Poly(aspartic acid) as Potential In Situ Gelling, Ocular Mucoadhesive Drug Delivery System, J. Pharm. Sci., 67, 1-11, 2015.
  74. Summonte S., Racaniello G.F., Lopedota A., Denora N., and Bernkop-Schnürch A., Thiolated Polymeric Hydrogels for Biomedical Application: Cross-Linking Mechanisms, Control. Release, 330, 470-482, 2021.
  75. Wang L., Xu J., Xue P., Liu J., Luo L., Zhuge D., Yao Q., Li X., Zhao Y., and Xu H., Thermo-Sensitive Hydrogel with Mussel-Inspired Adhesion Enhanced the Non-Fibrotic Repair Effect of EGF on Colonic Mucosa Barrier of TNBS-Induced Ulcerative Colitis Rats Through Macrophage Polarizing, Chem. Eng., 416, 129221, 2021.
  76. Achouri D., Alhanout K., Piccerelle P., and Andrieu V., Recent Advances in Ocular Drug Delivery, Drug Dev. Ind. Pharm., 39, 1599-1617, 2013.
  77. Firouzabadi V.J. and Kokabi M., Triple Stimuli Responsive Poly(vinyl alcohol) Chitosan/Nanoclay/Nanosilver Nanocomposite Hydrogel, Iran J. Polym. Sci. Technol. (Persian), 39, 3-14, 2019.
  78. Khan N., Aqil M., Ameeduzzafar, Imam S.S., and Ali A., Development and Evaluation of a Novel In Situ Gel of Sparfloxacin for Sustained Ocular Drug Delivery: In Vitro and Ex Vivo Characterization, Dev. Technol., 20, 662-669, 2015.
  79. Yu S., Zhang X., Tan G., Tian , Liu D., Liu Y., Yang X., and Pan W., A Novel pH-Induced Thermosensitive Hydrogel Composed of Carboxymethyl Chitosan and Poloxamer Cross-linked by Glutaraldehyde for Ophthalmic Drug Delivery, Carbohydr. Polym., 155, 208-217, 2017.
  80. Davaran S., Lotfipour F., Sedghipour N., and Sedghipour M.R., Alimohammadi S., and Salehi R., Preparation and In Vivo Evaluation of In Situ Gel System as Dual Thermo-/pH-Responsive Nanocarriers for Sustained Ocular Drug Delivery, Microencapsul., 32, 511-519, 2015.
  81. Gupta H., Malik A., Khar R., Ali A., Bhatnagar A., and Mittal G., Physiologically Active Hydrogel (in situ gel) of Sparfloxacin and Its Evaluation for Ocular Retention Using Gamma Scintigraphy, Pharm. Bioallied Sci., 7, 195, 2015.
  82. Nur M. and Vasiljevic T., Can Natural Polymers Assist in Delivering Insulin Orally?, J. Biol. Macromol., 103, 889-901, 2017.
  83. Shetye S.P., Godbole A., Bhilegaokar S., and Gajare P., Hydrogels: Introduction, Preparation, Characterization and Applications, J. Res. Methodol., 1, 2015.
  84. Fathi M., Barar J., Aghanejad A., and Omidi Y., Hydrogels for Ocular Drug Delivery and Tissue Engineering, BioImpacts: BI, 5, 159, 2015.
  85. Laftah W.A., Hashim S., and Ibrahim A.N., Polymer Hydrogels: A Review, Plast. Technol. Mater., 50, 1475-1486, 2011.
  86. Singh A.V., Biopolymers in Drug Delivery: A Review, Pharmacologyonline, 1, 666-674, 2011.
  87. Chandra N.S., Gorantla S., Priya S., and Singhvi G., Insight on Updates in Polysaccharides for Ocular Drug Delivery, Polym., 297, 120014, 2022.
  88. Tsung H., Chen Y.H., and Lu D.W., Updates on Biodegradable Formulations for Ocular Drug Delivery, Pharmaceutics, 15, 734, 2023.
  89. Zhang Y., Yu J., Ren K., Zuo J., Ding J., and Chen X., Thermosensitive Hydrogels as Scaffolds for Cartilage Tissue Engineering, Biomacromolecules, 20, 1478-1492, 2019.
  90. Bhattarai N., Gunn J., and Zhang M., Chitosan-Based Hydrogels for Controlled, Localized Drug Delivery, Drug Deliv. Rev., 62, 83-99, 2010.
  91. Fulgêncio G.d.O., Viana F.A.B., Ribeiro R.R., Yoshida M.I., Faraco A.G., and Cunha-Júnior A.d.S., New Mucoadhesive Chitosan Film for Ophthalmic Drug Delivery of Timolol Maleate: In Vivo Evaluation, Ocul. Pharmacol. Ther., 28, 350-358, 2012.
  92. Trabelsi I., Ayadi D., Bejar W., Bejar S., Chouayekh H., and Salah R.B., Effects of Lactobacillus Plantarum Immobilization in Alginate Coated with Chitosan and Gelatin on Antibacterial Activity, J. Biol. Macromol., 64, 84-89, 2014.
  93. Chang D., Park K., and Famili A., Hydrogels for Sustained Delivery of Biologics to the Back of the Eye, Drug Discov. Today, 24, 1470-1482, 2019.
  94. Cao Y., Zhang C., Shen W., Cheng Z., Yu L.L., and Ping Q., Poly(N-isopropylacrylamide)–Chitosan as Thermosensitive In Situ Gel-Forming System for Ocular Drug Delivery, Control. Release, 120, 186-194, 2007.
  95. Yu Y., Xu S., Yu S., Li J., Tan G., Li S., and Pan W., A Hybrid Genipin-Cross-Linked Hydrogel/Nanostructured Lipid Carrier for Ocular Drug Delivery: Cellular, Ex Vivo, and In Vivo Evaluation, ACS Biomater. Sci. Eng., 6, 1543-1552, 2020.
  96. Aslzad S., Savadi , Abdolahinia E.D., Omidi Y., Fathi M., and Barar J., Chitosan/Dialdehyde Starch Hybrid In Situ Forming Hydrogel for Ocular Delivery of Betamethasone, Mater. Today Commun., 33, 104873, 2022.
  97. Shi H., Wang Y., Bao Z., Lin D., Liu H., Yu A., Lei L., Li X., and Xu X., Thermosensitive Glycol Chitosan-Based Hydrogel as a Topical Ocular Drug Delivery System for Enhanced Ocular Bioavailability, J. Pharm., 570, 118688, 2019.
  98. Ghanavi M., Khoshandam A., Aslzad S., Fathi M., Barzegari A., Abdolahinia E.D., Adibkia K., Barar J., and Omidi Y., Injectable thermosensitive PEG-g-Chitosan Hydrogel for Ocular Delivery of Vancomycin and Prednisolone, Drug Deliv. Technol., 83, 104385, 2023.
  99. Martens T.F., Remaut K., Deschout H., Engbersen J.F., Hennink W.E., Van Steenbergen M.J., Demeester J., De Smedt S.C., and Braeckmans K., Coating Nanocarriers with Hyaluronic Acid Facilitates Intravitreal Drug Delivery for Retinal Gene Therapy, Control. Release, 202, 83-92, 2015.
  100. Trombino S., Servidio C., Curcio F., and Cassano R., Strategies for Hyaluronic Acid-Based Hydrogel Design in Drug Delivery, Pharmaceutics, 11, 407, 2019.
  101. Widjaja L.K., Bora M., Chan P.N.P.H., Lipik V., Wong T.T., and Venkatraman S.S., Hyaluronic Acid-Based Nanocomposite Hydrogels for Ocular Drug Delivery Applications, Biomed. Mater. Res. A, 102, 3056-3065, 2014.
  102. Wu Y., Yao J., Zhou J., and Dahmani F.Z., Enhanced and Sustained Topical Ocular Delivery of Cyclosporine A in Thermosensitive Hyaluronic Acid-Based In Situ Forming Microgels, J. Nanomed., 3587-3601, 2013.
  103. Schramm C., Spitzer M.S., Henke-Fahle S., Steinmetz G., Januschowski K., and Heiduschka P., Geis-Gerstorfer J., Biedermann T., Bartz-Schmidt K.U., and Szurman P., The Cross-Linked Biopolymer Hyaluronic Acid as an Artificial Vitreous Substitute, Ophthalmol. Vis. Sci., 53, 613-621, 2012.
  104. Vandervoort J., and Ludwig A., Preparation and Evaluation of Drug-Loaded Gelatin Nanoparticles for Topical Ophthalmic Use, J. Pharm. Biopharm., 57, 251-261, 2004.
  105. Shen C., Zhao X., Ren Z., Yang B., Wang X., Hu A., and Hu J, In Situ Formation of Injectable Gelatin Methacryloyl (GelMA) Hydrogels for Effective Intraocular Delivery of Triamcinolone Acetonide, J. Mol. Sci., 24, 4957, 2023.
  106. Liu W., Griffith M., Li F., Alginate Microsphere-Collagen Composite Hydrogel for Ocular Drug Delivery and Implantation, Mater. Sci.: Mater. Med., 19, 3365-3371, 2008.
  107. Lin H.-R., Sung K., Vong W.-J., In Situ Gelling of Alginate/Pluronic Solutions for Ophthalmic Delivery of Pilocarpine, Biomacromolecules, 5, 2358-2365, 2004.
  108. Mandal S., Thimmasetty M.K., Prabhushankar G., and Geetha M., Formulation and Evaluation of an In Situ Gel-Forming Ophthalmic Formulation of Moxifloxacin Hydrochloride, J. Pharm. Investig., 2, 78, 2012.
  109. Pandit J., Bharathi D., Srinatha A., Ridhurkar D., Singh S., Long Acting Ophthalmic Formulation of Indomethacin: Evaluation of Alginate Gel Systems, J. Pharm. Sci., 69, 2007.
  110. Sultana Y., Aqil M., Ali A., and Zafar S., Evaluation of Carbopol-Methyl Cellulose Based Sustained-Release Ocular Delivery System for Pefloxacin Mesylate Using Rabbit Eye Model, Dev. Technol., 11, 313-319, 2006.
  111. Silva M.M., Calado R., Marto J., Bettencourt A., Almeida A.J., and Gonçalves L.M., Chitosan Nanoparticles as a Mucoadhesive Drug Delivery System for Ocular Administration, Drugs, 15, 370, 2017.
  112. Gambhire S., Bhalerao K., Singh S., In Situ Hydrogel: Different Approaches to Ocular Drug Delivery, J. Pharm. Pharm. Sci., 5, 27-36, 2013.
  113. Dewan M., Bhowmick B., Sarkar G., Rana D., Bain M.K., Bhowmik M., and Chattopadhyay D., Effect of Methyl Cellulose on Gelation Behavior and Drug Release from Poloxamer Based Ophthalmic Formulations, J. Biol. Macromol., 72, 706-710, 2015.
  114. Bain M.K., Bhowmik M., Ghosh S.N., and Chattopadhyay D., In Situ Fast Gelling Formulation of Methyl Cellulose for In Vitro Ophthalmic Controlled Delivery of Ketorolac Tromethamine, Appl. Polym. Sci., 113, 1241-1246, 2009.
  115. Nanda A., Das S., Sahoo R.N., Nandi S., Swain R., Pattanaik S., Das D., and Mallick S., Aspirin–Hydrogel Ocular Film for Topical Delivery and Ophthalmic Anti-inflammation, Serb. Chem. Soc., 87, 829-843, 2022.
  116. Chen J., Li Q., Xu J., Huang Y., Ding Y., Deng H., Zhao S., and Chen R., Study on Biocompatibility of Complexes of Collagen–Chitosan–Sodium Hyaluronate and Cornea, Organs, 29, 104-113, 2005.
  117. Khan R., Khan M.H., Use of Collagen as a Biomaterial: An Update, Indian Soc. Periodontol., 17, 539, 2013.
  118. Liu W., Griffith M., and LI F., Alginate Microsphere-Collagen Composite Hydrogel for Ocular Drug Delivery and Implantation, Mater. Sci.: Mater. Med., 19, 3365-3371, 2008.
  119. Mi , Chen B., Wright B., and Connon C.J., Plastic Compression of a Collagen Gel Forms a Much Improved Scaffold for Ocular Surface Tissue Engineering Over Conventional Collagen Gels, J. Biomed. Mater. Res. A, 95, 447-453, 2010.
  120. Li Z., Cheng H., Ke L., Liu , Wang C.G., Jun Loh X., Li Z., and Wu YL., Recent Advances in New Copolymer Hydrogel-Formed Contact Lenses for Ophthalmic Drug Delivery, Chem. Nano Mat., 7, 564-579, 2021.
  121. Ilochonwu B.C., van der Lugt S.A., Annala A., Di Marco G., Sampon T., Siepmann J., Siepmann F., Hennink W.E., and Vermonden T., Thermo-responsive Diels-Alder Stabilized Hydrogels for Ocular Drug Delivery of a Corticosteroid and an Anti-VEGF FAB Fragment, Control. Release, 361, 334-349, 2023.
  122. Chegini S.P., Varshosaz J., Sadeghi H.M., Dehghani A., and Minaiyan M., Shear Sensitive Injectable Hydrogels of Cross-Linked Tragacanthic Acid for Ocular Drug Delivery: Rheological and Biological Evaluation, J. Biol. Macromol., 165, 2789-2804, 2020.
  123. Sun J., Liu X., Lei Y., Tang M., Dai Z., Yang X., Yu X., Yu L., Sun X., and Ding J., Sustained subconjunctival Delivery of Cyclosporine a Using Thermogelling Polymers for Glaucoma Filtration Surgery, Mater. Chem. B, 5, 6400-6411, 2017.
  124. Al Khateb K., Ozhmukhametova E.K., Mussin M.N., Seilkhanov S.K., Rakhypbekov T.K., Lau W.M., and V. Khutoryanskiy V., In Situ Gelling Systems Based on Pluronic F127/Pluronic F68 Formulations for Ocular Drug Delivery, J. Pharm., 502, 70-79, 2016.
  125. Morsi N., Ghorab D., Refai H., and Teba H., Ketoroloac Tromethamine Loaded Nanodispersion Incorporated into Thermosensitive In Situ Gel for Prolonged Ocular Delivery, J. Pharm., 506, 57-67, 2016.
  126. Sawant D., Dandagi P.M., and Gadad A.P., Formulation and Evaluation of Sparfloxacin Emulsomes-Loaded Thermosensitive In Situ Gel for Ophthalmic Delivery, Sol-Gel Sci. Techn., 77, 654-665-2016.
  127. Lihong W., Xin C., Yongxue G., Yiying B., and Gang C., Thermoresponsive Ophthalmic Poloxamer/Tween/Carbopol In Situ Gels of a Poorly Water-Soluble Drug Fluconazole: Preparation and In Vitro–In Vivo Evaluation, Drug Dev. Ind. Pharm., 40, 1402-1414, 2014.
  128. Gadad A.P., Wadklar P.D., Dandghi P., and Patil A., Thermosensitive In Situ Gel for Ocular Delivery of Lomefloxacin, Indian J. Pharm. Educ. Res., 50, S96-105, 2016.
  129. Qian Y., Wang F., Li R., Zhang Q., and Xu Q., Preparation and Evaluation of In Situ Gelling Ophthalmic Drug Delivery System for Methazolamide, Drug Dev. Ind. Pharm., 36, 1340-1347, 2010.
  130. Asasutjarit R., Thanasanchokpibull S., Fuongfuchat A., and Veeranondha S., Optimization and Evaluation of Thermoresponsive Diclofenac Sodium Ophthalmic In Situ Gels, J. Pharm., 411, 128-135, 2011.
  131. Ammar H., Salama H., Ghorab M., and Mahmoud A., Development of Dorzolamide Hydrochloride In Situ Gel Nanoemulsion for Ocular Delivery, Drug Dev. Ind. Pharm., 36, 1330-1339, 2010.
  132. Wu H., Liu Z., Peng J., Li L., Li N., Li J., and Pan H., Design and Evaluation of Baicalin-Containing In Situ pH-Triggered Gelling System for Sustained Ophthalmic Drug Delivery, J. Pharm., 410, 31-40, 2011.
  133. Upadhayay P., Kumar M., and Pathak K., Norfloxacin loaded pH Triggered Nanoparticulate In-Situ Gel for Extraocular Bacterial Infections: Optimization, Ocular Irritancy and Corneal Toxicity, Iran J. Pharm. Res., 15, 3, 2016.
  134. Gupta S. and Vyas S.P., Carbopol/Chitosan Based pH Triggered In Situ Gelling System for Ocular Delivery of Timolol Maleate, Pharm., 78, 959-976, 2010.
  135. Pang X., Li J., Pi J., Qi D., Guo P., Li N., Wu Y., and Liu Z., Increasing Efficacy and Reducing Systemic Absorption of Brimonidine Tartrate Ophthalmic Gels in Rabbits, Dev. Technol., 23, 231-239, 2018.
  136. Kanoujia J., Sonker K., Pandey M., Kymonil K.M., and Saraf S.A., Formulation and Characterization of a Novel pH-Triggered In-Situ Gelling Ocular System Containing Gatifloxacin, Curr. Pharm. J., 1, 43-49, 2012.
  137. Sheikh A.A., Development and Characterization of Novel In Situ Gel of Moxifloxacin Hydrochloride, Asian J. Pharm. Sci., 11, 2017.
  138. Liu Z., Li J., Nie S., Liu H., Ding P., and Pan W., Study of an Alginate/HPMC-Based In Situ Gelling Ophthalmic Delivery System for Gatifloxacin, J. Pharm., 315, 12-17, 2006.
  139. Liu Z., Yang X.G., Li X., Pan W., and Li J., Study on the Ocular Pharmacokinetics of Ion-Activated In Situ Gelling Ophthalmic Delivery System for Gatifloxacin by Microdialysis, Drug Dev. Ind. Pharm., 33, 1327-1333, 2007.
  140. Fernández-Ferreiro A., Bargiela N.F., Varela M.S., Martínez M.G., Pardo M., and Ces A.P., Mendez J.b., Barcia M.G., Lamas M.J., Otero-Spinar F.J., Cyclodextrin–Polysaccharide-Based, In Situ-Gelled System for Ocular Antifungal Delivery, Beilstein J. Org. Chem., 10, 2903-2911, 2014.
  141. Morsi N., Ibrahim M., Refai H., and El Sorogy H., Nanoemulsion-Based Electrolyte Triggered In Situ Gel For Ocular Delivery of Acetazolamide, J. Pharm. Sci., 104, 302-314, 2017.
  142. Tayel S.A., El-Nabarawi M.A., Tadros M.I., and Abd-Elsalam W.H., Promising Ion-Sensitive In Situ Ocular Nanoemulsion Gels of Terbinafine Hydrochloride: Design, In Vitro Characterization and In Vivo Estimation of the Ocular Irritation and Drug Pharmacokinetics in the Aqueous Humor of Rabbits, J. Pharm., 443, 293-305, 2013.
  143. Rupenthal I.D., Alany R.G., and Green C.R., Ion-Activated In Situ Gelling Systems for Antisense Oligodeoxynucleotide Delivery to the Ocular Surface, Pharmaceutics, 8, 2282-2290, 2011.
  144. Gupta H., Aqil M., Khar R., Ali A., Bhatnagar A., and Mittal G., An Alternative In Situ Gel-Formulation of Levofloxacin Eye Drops for Prolong Ocular Retention, Pharm. Bioallied Sci., 7, 9, 2015.
  145. Gupta H., Velpandian T., and Jain S., Ion-and pH-Activated Novel In-Situ Gel System for Sustained Ocular Drug Delivery, Drug Target., 18, 499-505, 2010.
  146. Başaran B., and Bozkir A., Thermosensitive and pH Induced In Situ Ophthalmic Gelling System for Ciprofloxacin Hydrochloride: Hydroxypropyl-β-Cyclodextrin Complex, Acta Pol. Pharm., 69, 1137-1147, 2012.
  147. Patel N., Nakrani H., Raval M., and Sheth N., Development of Loteprednol Etabonate-Loaded Cationic Nanoemulsified In-Situ Ophthalmic Gel for Sustained Delivery and Enhanced Ocular Bioavailability, Drug Deliv., 23, 3712-3723, 2016.
  148. Gan L., Gan Y., Zhu C., Zhang X., and Zhu J., Novel Microemulsion In Situ Electrolyte-Triggered Gelling System for Ophthalmic Delivery of Lipophilic Cyclosporine A: In Vitro and In Vivo results, J. Pharm., 365, 143-149, 2009.
  149. Singh J., Chhabra G., Pathak K., Development of Acetazolamide-Loaded, pH-Triggered Polymeric Nanoparticulate In Situ Gel for Sustained Ocular Delivery: In Vitro. Ex Vivo Evaluation and Pharmacodynamic Study, Drug Dev. Ind. Pharm., 40, 1223-1232, 2014.
  150. Liu R., Sun L., Fang S., Wang S., Chen J., and Xiao X., Liu C., Thermosensitive In Situ Nanogel as Ophthalmic Delivery System of Curcumin: Development, Characterization, In Vitro Permeation and In Vivo Pharmacokinetic Studies, Dev. Technol., 21, 576-582, 2016.
  151. Keino H., Horie S., and Sugita S., Immune Privilege and Eye-derived T-Regulatory Cells, Immunol. Res., 2018, 2018.
  152. Kirchhof S., Goepferich A.M., and Brandl F.P., Hydrogels in Ophthalmic Applications, J. Pharm. Biopharm., 95, 227-238, 2015.
  153. Huhtala A., Pohjonen T., Salminen L., Salminen A., Kaarniranta K., and Uusitalo H., In Vitro Biocompatibility of Degradable Biopolymers in Cell Line Cultures From Various Ocular Tissues: Direct Contact Studies, Biomed. Mater. Res. A, 83, 407-413, 2007.
  154. Short B.G., Safety Evaluation of Ocular Drug Delivery Formulations: Techniques and Practical Considerations, Pathol., 36, 49-62, 2008.
  155. Lai J.Y., Biocompatibility of Chemically Cross-Linked Gelatin Hydrogels for Ophthalmic use, Mater. Sci.: Mater. Med., 21, 1899-1911, 2010.
  156. Lai J.Y., Ma H.K., Cheng H.Y., Sun C.C., Huang S.J., and Li Y.T., and Hsiue GH., Ocular Biocompatibility of Carbodiimide Cross-Linked Hyaluronic Acid Hydrogels for Cell Sheet Delivery Carriers, J. Biomater. Sci. Polym. Ed., 21, 359-376, 2010.
  157. Postnikoff C.K., Pintwala R., Williams S., Wright A.M., Hileeto D., and Gorbet M.B., Development of a Curved, Stratified, In Vitro Model to Assess Ocular Biocompatibility, PloS One, 9, e96448, 2014.
  158. Lee S.S., Hughes P., Ross A.D., and Robinson M.R., Biodegradable Implants for Sustained Drug Release in the Eye, Res., 27, 2043-2053, 2010.
  159. Dua H.S., Faraj L.A., Said D.G., Gray T., and Lowe J., Human Corneal Anatomy Redefined: A Novel Pre-Descemet’s Layer (Dua’s layer), Ophthalmology, 120, 1778-1785, 2013.
  160. Van Tomme S.R., Storm G., and Hennink W.E., In Situ Gelling Hydrogels for Pharmaceutical and Biomedical Applications, J. Pharm., 355, 1-18, 2008.
  161. Hamidi M., Azadi A., Rafiei P., Hydrogel Nanoparticles in Drug Delivery, Drug Deliv. Rev., 60, 1638-1649, 2008.
  162. Ameeduzzafar, Ali J., Fazil M., Qumbar M., Khan N., and Ali A., Colloidal Drug Delivery System: Amplify the Ocular Delivery, Drug Deliv., 23, 700-716, 2016.
  163. Chaudhari P., Shetty D., and Lewis S.A., Recent Progress in Colloidal Nanocarriers Loaded In Situ Gel in Ocular Therapeutics, Drug Deliv. Technol., 71, 103327, 2022.
  164. Li S., Chen L., and Fu Y., Nanotechnology-Based Ocular Drug Delivery Systems: Recent Advances and Future Prospects, Nanobiotechnology, 21, 1-39, 2023.
  165. Yousry C., Elkheshen S.A., El-Laithy H.M., Essam T., and Fahmy R.H., Studying the Influence of Formulation and Process Variables on Vancomycin-Loaded Polymeric Nanoparticles as Potential Carrier for Enhanced Ophthalmic Delivery, J. Pharm. Sci., 100, 142-154, 2017.
  166. Pakzad Y., Fathi M., Omidi Y., Zamanian A., and Mozafari M. 21- Nanotechnology for Ocular and Optic Drug Delivery and Targeting, In Nanoengineered Biomaterials for Advanced Drug Delivery, Elsevier, Mozafari M, (Ed.), 499-523, 2020.
  167. Kumar D., Jain N., Gulati N., and Nagaich U., Nanoparticles Laden In Situ Gelling System for Ocular Drug Targeting, Adv. Pharm., 4, 9, 2013.
  168. Kabiri M., Kamal S.H., Pawar S.V., Roy P.R., Derakhshandeh M., Kumar U., Hatzikiriakos S.G., Hossain S., and Yadav V.G., A Stimulus-Responsive, In Situ-Forming, Nanoparticle-Laden Hydrogel for Ocular Drug Delivery, Drug Deliv. Transl. Res., 8, 484-495, 2018.
  169. Hsu X.-L., Wu L.C., Hsieh J.Y., and Huang Y.Y., Nanoparticle-Hydrogel Composite Drug Delivery System for Potential Ocular Applications, Polymers, 13, 642, 2021.
  170. Sathali A.H. and Sangeetha T., Formulation and Evaluation of Ocular Niosomal In Situ Gel of Levofloxacin Hemihydrates, Pharm. Res., 4, 4331-4337, 2011.
  171. De Luca I., Di Cristo F., Conte R., Peluso G., Cerruti P., and Calarco A., In-Situ Thermoresponsive Hydrogel Containing Resveratrol-Loaded Nanoparticles as a Localized Drug Delivery Platform for Dry Eye Disease, Antioxidants, 12, 993, 2023.
  172. Spierer O. and O’Brien T.P., Endothelial Keratoplasty Combined with Cataract Surgery or Alone Using Polyethylene Dlycol Hydrogel Sealant for Closure of Corneal Incisions, Cataract. Refract. Surg., 41, 492-496, 2015.
  173. Fang G., Yang X., Wang Q., Zhang A., and Tang B., Hydrogels-Based Ophthalmic Drug Delivery Systems for Treatment of Ocular Diseases, Sci. Eng. C, 127, 112212, 2021.
  174. Chowhan A. and Giri T.K., Polysaccharide as Renewable Responsive Biopolymer for in Situ Gel in the Delivery of Drug Through Ocular Route, J. Biol. Macromol., 150, 559-572, 2020.