مروری بر کاربرد زیست‌پلیمرها در مواد خون ایستان‌ نوین در پزشکی

نوع مقاله : مروری

نویسنده

مرکز تحقیقات مواد پیشرفته، دانشکده مهندسی مواد، واحد نجف‌آباد، دانشگاه آزاد اسلامی، نجف‌آباد، ایران.

چکیده

خونریزی یکی از عوامل اصلی مرگ­و­میر در حوادث طبیعی و نیز در اثر تصادفات و آسیب‌­های جنگی است. تشکیل لخته­‌های خون پایدار یا خون‌ایستی برای جلوگیری از هدررفت خون و مرگ بر اثر خونریزی زیاد ضروری است. اگرچه فرایند خودانعقادی در بدن وجود دارد، اما در آسیب‌­های شدید، این سامانه نمی‌­تواند به‌تنهایی و بدون کمک عوامل خون‌ایستان خونریزی را کنترل کند. روش‌­های سنتی مانند استفاده از گاز سترون و اعمال فشار در ناحیه خونریزی در قدیم به‌طور وسیع برای جلوگیری از خونریزی استفاده شده است. با وجود این، چنین روش‌­هایی کارایی زیادی ندارند. بنابراین، یافتن موادی که بتواند به‌سرعت از خونریزی جلوگیری کنند، موضوع پژوهش بسیاری از مطالعات بوده است. در این میان، مواد مختلف آلی و غیرآلی مورد توجه قرار گرفته‌­اند. برخی از پلیمر­ها به‌دلایل همخوانی با بافت‌­های بدن و نیز قابلیت کنترل و دستکاری خواص، نتایج بسیار امیدبخشی را نشان داده­اند. با توجه به اهمیت این پلیمر­ها، در این مطالعه سعی شده است تا مروری اجمالی بر این پلیمر­ها انجام شده و سازوکار عمل آن‌ها در کنترل خونریزی و انعقاد خون بررسی شود. همچنین، آخرین راهکار­ها در طراحی و فعالیت­های انجام‌شده در این موضوع بحث شود. سه سازوکار تغلیظ خون، فعال‌سازی آبشار انعقاد و ایجاد سد فیزیکی، عوامل اصلی عملکرد این مواد هستند. از معروف‌ترین پلیمر­ها برای کاربرد در خون‌ایستان می‌­توان به پلی­‌ساکارید­های نشاسته، آلژینات و سلولوز اکسیدشده اشاره کرد. همچنین از پلی‌پپتید­های کلاژن، ژلاتین، فیبرین، ترومبین و کراتین به‌عنوان منابع پلیمری دیگر در کنترل خونریزی استفاده می‌­شود. در ادامه راهکار­های بهبود خواص مواد پلیمری خون‌ایستان مرور شده و مسیر­های پژوهشی مورد توجه پژوهشگران بحث شده است. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A review on biopolymers for the application of new hemostatic materials in medicine

نویسنده [English]

  • Hassanzadeh-Tabrizi S.A.
Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
چکیده [English]

Bleeding is one of the main causes of death in natural disasters as well as due to accidents and war injuries. The formation of stable blood clots or hemostasis is necessary to prevent blood loss and death from excessive bleeding. Although there is a process of self-coagulation in the body, but in severe injuries, this system cannot control the bleeding alone without the help of clotting agents. Traditional methods such as the use of sterile gauze and applying pressure in the bleeding area have been widely used to prevent bleeding. However, these methods are not very effective. Therefore, finding substances that can quickly prevent bleeding has been the subject of many studies. Meanwhile, various organic and inorganic materials have been taken into consideration. Some polymers have shown very promising results due to compatibility with body tissues as well as the ability to control and manipulate properties. Considering the importance of these polymers, in this research, an overview of these polymers is carried out and the mechanism of action of these polymers in controlling bleeding and blood coagulation will be investigated. Also, the latest strategies in design and activities on this subject will be discussed. Three mechanisms of blood thickening, activation of the coagulation cascade and creation of a physical barrier are the main factors of the performance of these substances. Starch polysaccharides, alginate and oxidized cellulose can be mentioned among the most famous biopolymers for hemostatic application. Also, collagen, gelatin, fibrin, thrombin and keratin poly peptides are used as other biopolymer sources in bleeding control. In the following, the strategies used in improving the properties of hemostatic polymer materials are reviewed. The research directions in this topic, which are of interest to researchers, will be discussed.

کلیدواژه‌ها [English]

  • Biopolymers
  • Hemostatic materials
  • Bleeding
  • Coagulation
  • Mechanism
  1. Albadawi H., Altun I., Hu J., Zhang Z., Panda A., Kim H., Khademhosseini A., and Oklu R., Nanocomposite Hydrogel with Tantalum Microparticles for Rapid Endovascular Hemostasis, Adv. Sci., 8, 2003327, 2021.
  2. Price M.A., Kozar R.A., Bulger E.M., and Jurkovich G.J., Building the Future for National Trauma Research, Trauma Surg. Acute Care Open, 5, e000421, 2020.
  3. Yuan H., Chen L., and Hong F.F., A Biodegradable Antibacterial Nanocomposite Based on Oxidized Bacterial Nanocellulose for Rapid Hemostasis and Wound Healing, ACS Appl. Mater. Interfaces, 12, 3382-3392, 2019.
  4. Zhang J., Xue S., Zhu X., Zhao Y., Chen Y., Tong J., Shi X., Du Y., Zhong Z., and Ye Q., Emerging Chitin Nanogels/Rectorite Nanocomposites for Safe and Effective Hemorrhage Control, J. Mater. Chem. B, 7, 5096-5103, 2019.
  5. Buriuli M., Kumari W.G., and Verma D., Evaluation of Hemostatic Effect of Polyelectrolyte Complex-Based Dressings, J. Biomater. Appl., 32, 638-647, 2017.
  6. Dai N.-T., Fu K.-Y., Hsieh P.-S., Hung Y.-M., Fang Y.-L., Huang N.-C., Lu T.-W., Dai L.-G., Chen S.-G., and Chen
    T.-M., A Biodegradable Hemostatic Gelatin/Polycaprolactone Composite for Surgical Hemostasis, Ann. Plast. Surg., 78, S124-S128, 2017.
  7. Terzopoulou Z., Zamboulis A., Koumentakou I., Michailidou G., Noordam M.J., and Bikiaris D.N., Biocompatible Synthetic Polymers for Tissue Engineering Purposes, Biomacromolecules, 23, 1841-1863, 2022.
  8. Hassanzadeh-Tabrizi S.A., Fabrication of Cobalt Chromate Nanoparticles Using Polyacrylamide Gel Polymer Template, Iran. J. Polym. Sci. Technol. (Persian), 35, 521-529, 2023.
  9. Radmanesh S., Shabangiz S., Koupaei N., and Hassanzadeh-Tabrizi S.A., 3D Printed Biopolymeric Materials as a New Perspective for Wound Dressing and Skin Tissue Engineering Applications: A Review, J. Polym. Res., 29, 50, 2022.
  10. Mostafavi Esfahani M., Koupaei N., and Hassanzadeh-Tabrizi S.A., Synthesis and Characterization of Polyvinyl Alcohol/Dextran/Zataria Wound Dressing with Superior Antibacterial and Antioxidant Properties, J. Vinyl Addit. Technol., 29, 380-394, 2023.
  11. Mahbub M.S.I., Bae S.H., Gwon J.-G., and Lee B.-T., Decellularized Liver Extracellular Matrix and Thrombin Loaded Biodegradable TOCN/Chitosan Nanocomposite for Hemostasis and Wound Healing in Rat Liver Hemorrhage Model, Int. J. Biol. Macromol., 225, 1529-1542, 2023.
  12. Wang L., Hao F., Tian S., Dong H., Nie J., and Ma G., Targeting Polysaccharides Such as Chitosan, Cellulose, Alginate and Starch for Designing Hemostatic Dressings, Carbohydr. Polym., 291, 119574, 2022.
  13. Zhao P., Guo Z., Wang H., Zhou B., Huang F., Dong S., Yang J., Li B., and Wang X., A Multi-Crosslinking Strategy of Organic and Inorganic Compound Bio-Adhesive Polysaccharide-Based Hydrogel for Wound Hemostasis, Biomater. Adv., 213481, 2023.
  14. Ruggeri Z.M. and Mendolicchio G.L., Adhesion Mechanisms in Platelet Function, Circ. Res., 100, 1673-1685, 2007.
  15. Jiang S., Liu S., Lau S., and Li J., Hemostatic Biomaterials to Halt Non-Compressible Hemorrhage, J. Mater. Chem. B, 10, 7239-7259, 2022.
  16. Ikić V., Fibrinogen and Bleeding in Adult Cardiac Surgery: A Review of the Literature, Surgeries, 2, 409-436, 2021.
  17. Davie E.W., Fujikawa K., and Kisiel W., The Coagulation Cascade: Initiation, Maintenance, and Regulation, Biochemistry, 30, 10363-10370, 1991.
  18. Schenone M., Furie B.C., and Furie B., The Blood Coagulation Cascade, Curr. Opin. Hematol., 11, 272-277, 2004.
  19. Agarwal R., Niezgoda J., Niezgoda J., Madetipati N., and Gopalakrishnan S., Advances in Hemostatic Wound Dressings: Clinical Implications and Insight, Adv. Skin Wound Care, 35, 113-121, 2022.
  20. Edwards J.V., Prevost N.T., and Cintron M.S., A Comparison of Hemostatic Activities of Zeolite-Based Formulary Finishes on Cotton Dressings, J. Funct. Biomater., 14, 255, 2023.
  21. Wolberg A.S., Aleman M.M., Leiderman K., and Machlus K.R., Procoagulant Activity in Hemostasis and Thrombosis: Virchow’s Triad Revisited, Anesth. Analg., 114, 275, 2012.
  22. Sidonio R.F., Hoffman M., Kenet G., and Dargaud Y., Thrombin Generation and Implications for Hemophilia Therapies: A Narrative Review, Res. Pract. Thromb. Haemost., 7, 100018, 2023.
  23. de la Harpe K.M., Kondiah P.P.D., Choonara Y.E., Marimuthu T., du Toit L.C., and Pillay V., The Hemocompatibility of Nanoparticles: A Review of Cell–Nanoparticle Interactions and Hemostasis, Cells, 8, 1209, 2019.
  24. Zheng C., Zeng Q., Pimpi S., Wu W., Han K., Dong K., and Lu T., Research Status and Development Potential of Composite Hemostatic Materials, J. Mater. Chem. B, 8, 5395–5410, 2020.
  25. Goncharuk O., Korotych O., Samchenko Y., Kernosenko L., Kravchenko A., Shtanova L., Tsуmbalуuk O., Poltoratska T., Pasmurtseva N., and Mamyshev I., Hemostatic Dressings Based on Poly(vinyl formal) Sponges, Mater. Sci. Eng. C, 129, 112363, 2021.
  26. Lih E., Lee J.S., Park K.M., and Park K.D., Rapidly Curable Chitosan–PEG Hydrogels as Tissue Adhesives for Hemostasis and Wound Healing, Acta Biomater., 8, 3261-3269, 2012.
  27. Shin M., Kim K., Shim W., Yang J.W., and Lee H., Tannic Acid as a Degradable Mucoadhesive Compound, ACS Biomater. Sci. Eng., 2, 687-696, 2016.
  28. Szymańska E., Orłowski P., Winnicka K., Tomaszewska E., Bąska P., Celichowski G., Grobelny J., Basa A., and Krzyżowska M., Multifunctional Tannic Acid/Silver Nanoparticle-Based Mucoadhesive Hydrogel for Improved Local Treatment of HSV Infection: in Vitro and in Vivo Studies, Int. J. Mol. Sci., 19, 387, 2018.
  29. Haji F., Kim D.S., and Tam K.C., Tannic Acid-Coated Cellulose Nanocrystals with Enhanced Mucoadhesive Properties for Aquaculture, Carbohydr. Polym., 312, 120835, 2023.
  30. Engelsen S.B., Cros S., Mackie W., and Pérez S., A Molecular Builder for Carbohydrates: Application to Polysaccharides and Complex Carbohydrates, Biopolymers, 39, 417-433, 1996.
  31. Mohammed A.S.A., Naveed M., and Jost N., Polysaccharides; Classification, Chemical Properties, and Future Perspective Applications in Fields of Pharmacology and Biological Medicine (A Review of Current Applications and Upcoming Potentialities), J. Polym. Environ., 29, 2359-2371, 2021.
  32. Salmanian G., Hassanzadeh-Tabrizi S.A., and Koupaei N., Magnetic Chitosan Nanocomposites for Simultaneous Hyperthermia and Drug Delivery Applications: A Review, Int. J. Biol. Macromol., 184, 618-635, 2021.
  33. Soleymani Eil Bakhtiari S., Karbasi S., Hassanzadeh Tabrizi S.A., Ebrahimi-Kahrizsangi R., and Salehi H., Evaluation of the Effects of Chitosan/Multiwalled Carbon Nanotubes Composite on Physical, Mechanical and Biological Properties of Polymethyl Methacrylate-Based Bone Cements, Mater. Technol., 35, 267-280, 2020.
  34. Bakhtiari S.S.E., Karbasi S., Tabrizi S.A.H., and Ebrahimi-Kahrizsangi R., Chitosan/MWCNTs Composite as Bone Substitute: Physical, Mechanical, Bioactivity, and Biodegradation Evaluation, Polym. Compos., 40, E1622-E1632, 2019.
  35. Baghaei S., Khorasani M.T., Zarrabi A., and Moshtaghian J., Preparation and Determination of the Characteristics of Hydrogel Membrane of Poly-Vinyl Alchol, Starch and Chitosan, J. Adv. Mater. Process., 9, 11-20, 2021.
  36. Zheng Y., Pan N., Liu Y., and Ren X., Novel Porous Chitosan/N-Halamine Structure with Efficient Antibacterial and Hemostatic Properties, Carbohydr. Polym., 253, 117205, 2021.
  37. Rondon E.P., Benabdoun H.A., Vallières F., Segalla Petrônio M., Tiera M.J., Benderdour M., and Fernandes J.C., Evidence Supporting The Safety of Pegylated Diethylaminoethyl-Chitosan Polymer as a Nanovector for Gene Therapy Applications, Int. J. Nanomedicine, 6183-6200, 2020.
  38. Gheorghiță D., Moldovan H., Robu A., Bița A.-I., Grosu E., Antoniac A., Corneschi I., Antoniac I., Bodog A.D., and Băcilă C.I., Chitosan-Based Biomaterials for Hemostatic Applications: A Review of Recent Advances, Int. J. Mol. Sci., 24, 10540, 2023.
  39. Chou T.-C., Fu E., Wu C.-J., and Yeh J.-H., Chitosan Enhances Platelet Adhesion and Aggregation, Biochem. Biophys. Res. Commun., 302, 480-483, 2003.
  40. Huang Y., Feng L., Zhang Y., He L., Wang C., Xu J., Wu J., Kirk T.B., Guo R., and Xue W., Hemostasis Mechanism and Applications of N-Alkylated Chitosan Sponge, Polym. Adv. Technol., 28, 1107-1114, 2017.
  41. Lin X., Feng Y., He Y., Ding S., and Liu M., Engineering Design of Asymmetric Halloysite/Chitosan/Collagen Sponge with Hydrophobic Coating for High-Performance Hemostasis Dressing, Int. J. Biol. Macromol., 237, 124148, 2023.
  42. Akram A.M., Omar R.A., and Ashfaq M., Chitosan/Calcium Phosphate-Nanoflakes-Based Biomaterial: A Potential Hemostatic Wound Dressing Material, Polym. Bull., 80, 5071-5086, 2023.
  43. Lunkov A.P., Zubareva A.A., Varlamov V.P., Nechaeva A.M., and Drozd N.N., Chemical Modification of Chitosan for Developing of New Hemostatic Materials: A Review, Int. J. Biol. Macromol., 127608, 2023.
  44. Khan M.A. and Mujahid M., A Review on Recent Advances in Chitosan Based Composite for Hemostatic Dressings, Int. J. Biol. Macromol., 124, 138-147, 2019.
  45. Wang W., Meng Q., Li Q., Liu J., Zhou M., Jin Z., and Zhao K., Chitosan Derivatives and Their Application in Biomedicine, Int. J. Mol. Sci., 21, 487, 2020.
  46. Chang Q., Zheng B., Zhang Y., and Zeng H., A Comprehensive Review of the Factors Influencing the Formation of Retrograded Starch, Int. J. Biol. Macromol., 186, 163-173, 2021.
  47. Maniglia B.C., Castanha N., Le-Bail P., Le-Bail A., and Augusto P.E.D., Starch Modification through Environmentally Friendly Alternatives: A Review, Crit. Rev. Food Sci. Nutr., 61, 2482-2505, 2021.
  48. Panwar V., Sharma A., Thomas J., Chopra V., Kaushik S., Kumar A., and Ghosh D., in-Vitro and in-Vivo Evaluation of Biocompatible and Biodegradable Calcium-Modified Carboxymethyl Starch as a Topical Hemostat, Materialia, 7, 100373, 2019.
  49. Chen X., Yan Y., Li H., Wang X., Tang S., Li Q., Wei J., and Su J., Evaluation of Absorbable Hemostatic Agents of Polyelectrolyte Complexes Using Carboxymethyl Starch and Chitosan Oligosaccharide Both in Vitro and in Vivo, Biomater. Sci., 6, 3332-3344, 2018.
  50. Zheng C., Bai Q., Wu W., Han K., Zeng Q., Dong K., Zhang Y., and Lu T., Study on Hemostatic Effect and Mechanism of Starch-Based Nano-Microporous Particles, Int. J. Biol. Macromol., 179, 507-518, 2021.
  51. Deng Y., Chen J., Huang J., Yang X., Zhang X., Yuan S., and Liao W., Preparation and Characterization of Cellulose/Flaxseed Gum Composite Hydrogel and Its Hemostatic and Wound Healing Functions Evaluation, Cellulose, 27, 3971-3988, 2020.
  52. Habibi Y., Lucia L.A., and Rojas O.J., Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications, Chem. Rev., 110, 3479-3500, 2010.
  53. Cheng F., He J., Yan T., Liu C., Wei X., Li J., and Huang Y., Antibacterial and Hemostatic Composite Gauze of N, O-Carboxymethyl Chitosan/Oxidized Regenerated Cellulose, RSC Adv., 6, 94429-94436, 2016.
  54. Sezer U.A., Sahin İ., Aru B., Olmez H., Demirel G.Y., and Sezer S., Cytotoxicity, Bactericidal and Hemostatic Evaluation of Oxidized Cellulose Microparticles: Structure and Oxidation Degree Approach, Carbohydr. Polym., 219, 87-94, 2019.
  55. Chen Y., Wu L., Li P., Hao X., Yang X., Xi G., Liu W., Feng Y., He H., and Shi C., Polysaccharide Based Hemostatic Strategy For Ultrarapid Hemostasis, Macromol. Biosci., 20, 1900370, 2020.
  56. Zhang S., Li J., Chen S., Zhang X., Ma J., and He J., Oxidized Cellulose-Based Hemostatic Materials, Carbohydr. Polym., 230, 115585, 2020.
  57. Wang Y., Zhao Y., Qiao L., Zou F., Xie Y., Zheng Y., Chao Y., Yang Y., He W., and Yang S., Cellulose Fibers-Reinforced Self-Expanding Porous Composite with Multiple Hemostatic Efficacy and Shape Adaptability for Uncontrollable Massive Hemorrhage Treatment, Bioact. Mater., 6, 2089-2104, 2021.
  58. Ranjbar J., Koosha M., Chi H., Ghasemi A., Zare F., Abdollahifar M.A., Darvishi M., and Li T., Novel Chitosan/Gelatin/Oxidized Cellulose Sponges as Absorbable Hemostatic Agents, Cellulose, 28, 3663-3675, 2021.
  59. Zarei N. and Hassanzadeh-Tabrizi S.A., Alginate/Hyaluronic Acid-Based Systems as a New Generation of Wound Dressings: A Review, Int. J. Biol. Macromol., 127249, 2023.
  60. Uyen N.T.T., Hamid Z.A.A., Tram N.X.T., and Ahmad N., Fabrication of Alginate Microspheres for Drug Delivery: A Review, Int. J. Biol. Macromol., 153, 1035-1046, 2020.
  61. Fernando I.P.S., Lee W., Han E.J., and Ahn G., Alginate-Based Nanomaterials: Fabrication Techniques, Properties, and Applications, Chem. Eng. J., 391, 123823, 2020.
  62. Che C., Liu L., Wang X., Zhang X., Luan S., Yin J., Li X., and Shi H., Surface-Adaptive and On-Demand Antibacterial Sponge for Synergistic Rapid Hemostasis and Wound Disinfection, ACS Biomater. Sci. Eng., 6, 1776–1786, 2020.
  63. Ghimire S., Sarkar P., Rigby K., Maan A., Mukherjee S., Crawford K.E., and Mukhopadhyay K., Polymeric Materials for Hemostatic Wound Healing, Pharmaceutics, 13, 2127, 2021.
  64. Long Y., Yu G., Dong L., Xu Y., Lin H., Deng Y., You X., Yang L., and Liao B.-Q., Synergistic Fouling Behaviors and Mechanisms of Calcium Ions and Polyaluminum Chloride Associated with Alginate Solution in Coagulation-Ultrafiltration (UF) Process, Water Res., 189, 116665, 2021.
  65. Dong R. and Guo B., Smart Wound Dressings for Wound Healing, Nano Today, 41, 101290, 2021.
  66. Dabiri G., Damstetter E., and Phillips T., Choosing a Wound Dressing Based on Common Wound Characteristics, Adv. Wound Care, 5, 32-41, 2016.
  67. Bessa L.J., Fazii P., Di Giulio M., and Cellini L., Bacterial Isolates from Infected Wounds and Their Antibiotic Susceptibility Pattern: Some Remarks about Wound Infection, Int. Wound J., 12, 47-52, 2015.
  68. Otvos Jr L. and Ostorhazi E., Therapeutic Utility of Antibacterial Peptides in Wound Healing, Expert Rev. Anti. Infect. Ther., 13, 871-881, 2015.
  69. Azimi-Fouladi A., Falak P., and Hassanzadeh-Tabrizi S.A., The Photodegradation of Antibiotics on Nanocubic Spinel Ferrites Photocatalytic Systems: A Review, J. Alloys Compd., 171075, 2023.
  70. Mudhafar M., Zainol I., Aiza Jaafar C.N., Alsailawi H.A., and Desa Sh A., Review Synthesis Methods of Ag Nanoparticles: Antibacterial and Cytotoxicity, Int. J. Drug Deliv. Technol., 11, 635, 2021.
  71. Bisht N., Dwivedi N., Kumar P., Venkatesh M., Yadav A.K., Mishra D., Solanki P., Verma N.K., Lakshminarayanan R., and Ramakrishna S., Recent Advances in Copper and Copper-Derived Materials for Antimicrobial Resistance and Infection Control, Curr. Opin. Biomed. Eng., 100408, 2022.
  72. Saebnoori E., Koupaei N., and Hassanzadeh Tabrizi S.A., The Solution Plasma Synthesis, Characterisation, and Antibacterial Activities of Dispersed CuO Nanoparticles, Mater. Technol., 37, 1220-1229, 2022.
  73. Salehi-Abari M., Koupaei N., and Hassanzadeh-Tabrizi S.A., Synthesis and Characterisation of Semi-Interpenetrating Network of Polycaprolactone/Polyethylene Glycol Diacrylate/Zeolite-CuO as Wound Dressing, Mater. Technol., 35, 290-299, 2020.
  74. Rahimi M., Hassanzadeh Tabrizi S.A., Aminsharei F., Fabrication and Antibacterial Properties of TFC Membrane Modified with Cellulose/Copper Oxide Nanoparticles for Removal of Cadmium from Water, Sep. Sci. Technol., 57, 1762-1774, 2022.
  75. Hakimi-Tehrani M.J., Hassanzadeh-Tabrizi S.A., Koupaei N., Saffar A., and Rafiei M., Synthesis of Z-Scheme G-C3N4/WO3 Nano-Photocatalyst with Superior Antibacterial Characteristics for Wastewater Treatment, J. Sol-Gel Sci. Technol., 105, 212-219, 2023.
  76. Ge X., Ren C., Ding Y., Chen G., Lu X., Wang K., Ren F., Yang M., and Wang Z., Li J., Micro/Nano-Structured TiO2 Surface with Dual-Functional Antibacterial Effects for Biomedical Applications, Bioact. Mater., 4, 346-357, 2019.
  77. Hakimi-Tehrani M.J., Hassanzadeh-Tabrizi S.A., Koupaei N., Saffar-Teluri A., and Rafiei M., Facile Thermal Synthesis of G–C3N4/ZnO Nanocomposite with Antibacterial Properties for Photodegradation of Methylene Blue, Mater. Res. Express, 8, 125002, 2021.
  78. Tong Z., Yang J., Lin L., Wang R., Cheng B., Chen Y., Tang L., Chen J., and Ma X., In Situ Synthesis of Poly(γ-Glutamic Acid)/Alginate/AgNP Composite Microspheres with Antibacterial and Hemostatic Properties, Carbohydr. Polym., 221, 21-28, 2019.
  79. Lim Y.-S., Ok Y.-J., Hwang S.-Y., Kwak J.-Y., and Yoon S., Marine Collagen as a Promising Biomaterial for Biomedical Applications, Mar. Drugs, 17, 467, 2019.
  80. Wang Y., Gallant R.C., and Ni H., Extracellular Matrix Proteins in the Regulation of Thrombus Formation, Curr. Opin. Hematol., 23, 280-287, 2016.
  81. He Y., Wang J., Si Y., Wang X., Deng H., Sheng Z., Li Y., Liu J., and Zhao J., A Novel Gene Recombinant Collagen Hemostatic Sponge with Excellent Biocompatibility and Hemostatic Effect, Int. J. Biol. Macromol., 178, 296-305, 2021.
  82. Liu X., Hou M., Luo X., Zheng M., Wang X., Zhang H., and Guo J., Thermoresponsive Hemostatic Hydrogel with a Biomimetic Nanostructure Constructed from Aggregated Collagen Nanofibers, Biomacromolecules, 22, 319-329, 2021.
  83. Wang T., Yang L., Wang G., Han L., Chen K., Liu P., Xu S., Li D., Xie Z., and Mo X., Biocompatibility, Hemostatic Properties, and Wound Healing Evaluation of Tilapia Skin Collagen Sponges, J. Bioact. Compat. Polym., 36, 44-58, 2021.
  84. Wang L., You X., Dai C., Tong T., and Wu J., Hemostatic Nanotechnologies for External and Internal Hemorrhage Management, Biomater. Sci., 8, 4396-4412, 2020.
  85. Liening D.A., Lundy L., Silberberg B., and Finstuen K., A Comparison of the Biocompatibility of Three Absorbable Hemostatic Agents in the Rat Middle Ear, Otolaryngol. Neck Surg., 116, 454-457, 1997.
  86. Campiglio C.E., Contessi Negrini N., Farè S., and Draghi L., Cross-Linking Strategies for Electrospun Gelatin Scaffolds, Materials (Basel)., 12, 2476, 2019.
  87. Sun H.W., Feigal R.J., and Messer H.H., Cytotoxicity of Glutaraldehyde and Formaldehyde in Relation to Time of Exposure and Concentration, Pediatr Dent, 12, 303-307, 1990.
  88. Sun Y., Miao T., Wang Y., Wang X., Lin J., Zhao N., Hu Y., and Xu F.-J., A Natural Polyphenol-Functionalized Chitosan/Gelatin Sponge for Accelerating Hemostasis and Infected Wound Healing, Biomater. Sci., 11, 2405-2418, 2023.
  89. Narayanan S., Multifunctional Roles of Thrombin, Ann. Clin. Lab. Sci., 29, 275-280, 1999.
  90. Davie E.W. and Kulman J.D., An Overview of the Structure and Function of Thrombin, Semin. Thromb. Hemost., 32, 003-015, 2006.
  91. Shabanova E.M., Drozdov A.S., Fakhardo A.F., Dudanov I.P., Kovalchuk M.S., and Vinogradov V.V, Thrombin@Fe3O4 Nanoparticles for Use as a Hemostatic Agent in Internal Bleeding, Sci. Rep., 8, 233, 2018.
  92. Kattula S., Byrnes J.R., and Wolberg A.S., Fibrinogen and Fibrin in Hemostasis and Thrombosis, Arterioscler. Thromb. Vasc. Biol., 37, e13-e21, 2017.
  93. Beudert M., Gutmann M., Lühmann T., and Meinel L., Fibrin Sealants: Challenges and Solutions, ACS Biomater. Sci. Eng., 8, 2220-2231, 2022.
  94. Wong C., Inman E., and Spaethe R., and Helgerson S., Fibrin-Based Biomaterials to Deliver Human Growth Factors, Thromb. Haemost., 89, 573-582, 2003.
  95. Bayer I.S., Advances in Fibrin-Based Materials in Wound Repair: A Review, Molecules, 27, 4504, 2022.
  96. Bujoli B., Scimeca J.-C., and Verron E., Fibrin as a Multipurpose Physiological Platform for Bone Tissue Engineering and Targeted Delivery of Bioactive Compounds, Pharmaceutics, 11, 556, 2019.
  97. Behrens A.M., Sikorski M.J., and Kofinas P., Hemostatic Strategies for Traumatic and Surgical Bleeding, J. Biomed. Mater. Res. Part A, 102, 4182-4194, 2014.
  98. Wang D., Li W., Wang Y., Yin H., Ding Y., Ji J., Wang B., and Hao S., Fabrication of an Expandable Keratin Sponge for Improved Hemostasis in a Penetrating Trauma, Colloids Surfaces, B: Biointerfaces, 182, 110367, 2019.
  99. Lu W.-F., Lu T.-Y., Liu Y.-C., Liu T.-H., Feng C.-C., Lin C.-W., Yang K.-C., Wei Y., and Yu J., Keratin-Associated Protein Nanoparticles as Hemostatic Agents, ACS Appl. Nano Mater., 4, 12798-12806, 2021.
  100. Serrano S.M.T., The Long Road of Research on Snake Venom Serine Proteinases, Toxicon, 62, 19-26, 2013.
  101. Camacho E., Ramírez-Vargas G., Vargas K., Rucavado A., Escalante T., Vargas M., Segura Á., Argüello I., Campos M., and Guerrero G., Neutralization, by a Polyspecific Antivenom, of the Coagulopathy Induced by the Venom of Bothrops Asper: Assessment by Standard Coagulation Tests and Rotational Thromboelastometry in a Murine Model, Toxicon, 234, 107301, 2023.
  102. Vilca-Quispe A., Alvarez-Risco A., Gomes Heleno M.A., Ponce-Fuentes E.A., Vera-Gonzales C., Zegarra-Aragon H.F.E., Aquino-Puma J.L., Talavera-Núñez M.E., Del-Aguila-Arcentales S., and Yáñez J.A., Biochemical and Hemostatic Description of a Thrombin-Like Enzyme TLBro from Bothrops Roedingeri Snake Venom, Front. Chem., 11, 1217329, 2023.
  103. Kumar V.A., Wickremasinghe N.C., Shi S., and Hartgerink J.D., Nanofibrous Snake Venom Hemostat, ACS Biomater. Sci. Eng., 1, 1300-1305, 2015.