غشاهای برپایه مکسین در تصفیه آب : روش‌های تهیه، خواص و کاربرد‌

نوع مقاله : مروری

نویسنده

تهران، پژوهشگاه پلیمر و پتروشیمی ایران، پژوهشکده علوم پلیمر،گروه پلی‌یورتان و مواد پیشرفته، صندوق پستی 112-14975

چکیده

وجود حیات روی زمین به دسترس‌پذیری آب بستگی دارد. رشد سریع جمعیت، توسعه صنعتی و کمبود منابع آب شیرین، جامعه بشری را با چالش جهانی کمبود آب روبه‌رو کرده است. انتظار می‌رود، تقاضای جهانی آب از هم اکنون تا سال 2040، بین  %20 تا %30 افزایش یابد. به‌منظور مقابله با این مشکل، فرایندهای مختلفی در تصفیه آب به‌کار گرفته شدند. در این میان، جداسازی غشایی به‌دلیل کیفیت زیاد آب تولیدی، کارکرد آسان، قابلیت کار در شرایط ملایم و مصرف کم انرژی می‌تواند فناوری مناسبی برای مقابله با این چالش باشد. زیرا، سایر فناوری‌­های رایج برای تصفیه آب مانند تقطیر، به مصرف انرژی زیادی نیاز دارد و این فناوری‌­ها نمی­‌توانند تقاضای جهانی برای آب شیرین را برآورده کنند. از میان فرایندهای غشایی مختلف، اسمز معکوس فناوری کارآمد در حذف یون‌های نمک از آب شور برای دستیابی به آب آشامیدنی است. در روش­‌های جداسازی غشایی، انتخاب ماده مناسب به‌عنوان غشا بسیار مهم است، زیرا خواص فیزیکی، شیمیایی، مکانیکی و عملکرد جداسازی سامانه غشایی (نفوذ آب، گزینش‌پذیری و پس‌زنی نمک) به‌شدت به نوع ماده انتخاب‌شده بستگی دارد. بنابراین، توسعه مواد غشایی جدید برای نمک‌زدایی، همچنان مورد توجه و علاقه پژوهشگران است تا عملکرد غشاها را در جهت نمک‌زدایی بهبود بخشند. نانوصفحه‌های مکسین (نیترید و کاربید فلزات واسطه) دسته جدیدی از مواد دوبعدی با ساختارهای گرافن‌مانند هستند که خواص منحصربه‌فردی از جمله سطح بزرگ، فضای بین‌لایه­ای باریک، آب­دوستی و گروه‌­های عاملی سطحی زیاد و خواص فیزیکی، شیمیایی و مکانیکی مناسب دارند. این ترکیبات به‌تنهایی به‌عنوان ساختارهای غشایی جدید و نیز به‌عنوان نانومواد در بهبود خواص پلیمرهای استفاده‌شده در فرایندهای غشایی، برای اهداف جداسازی غشایی از اهمیت ویژه­ای برخوردارند. بدین منظور در مقاله حاضر، اطلاعات جامعی درباره ترکیبات مکسین، روش‌­های سنتز، گروه­‌های عاملی سطحی، تهیه غشای مکسین و غشاهای بر پایه مکسین با تمرکز بر استفاده از آن‌ها در فناوری‌­های تصفیه آب معرفی شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

MXene-based membranes for water treatment: preparation, properties, and application

نویسنده [English]

  • samal babanzadeh
Iran Polymer and Petrochemical Institute
چکیده [English]

The existence of life on Earth depends on the availability of water. Rapid population growth, industrial development, and shortage of freshwater resources have made human society face the global challenge of water shortage, and it is expected that the world's water demand will increase by 20-30% from now until 2040. To overcome this problem, different processes have been used to purify water, and among these processes, membrane separation can be a suitable technology to meet this challenge due to the high quality of produced water, simplicity of operation, ability to operate under mild conditions, and low energy consumption. The common technologies for water treatment like distillation require high energy consumption and these technologies can not meet the global demand for fresh water. Among the different membrane processes, reverse osmosis is an efficient technology to remove salt ions from brackish water to obtain potable water. In membrane separation methods, the selection of the appropriate material as a membrane is so important because the physical, chemical, and mechanical properties, and separation performance (water flux, selectivity and, salt rejection) of the membrane are strongly dependent on the selected material type. Hence, researchers are still interested in the use of new materials to improve membrane performance. MXene nanosheets (transition metal carbides and nitrides) are a new category of two-dimensional materials with graphene-like structures that have unique properties, including large surface area, narrow interlayer spacing, high hydrophilicity, and surface functionality, suitable physical, chemical, and mechanical properties for membrane applications. Mxene compounds are important both as new pure membrane structures and also as nanomaterials to improve the properties of polymers in membrane processes. To this end, in the present paper, comprehensive information has been introduced on MXene compounds, including their synthesis, surface functionality, and membrane fabrication, with a focus on water treatment technology.

کلیدواژه‌ها [English]

  • "2D materials"
  • "MAX-phase"
  • "MXene"
  • "membrane"
  • "desalination"
  1. Khayet M., Treatment of Radioactive Wastewater Solutions by Direct Contact Membrane Distillation Using Surface Modified Membranes, Desalination. 321, 60-66, 2013.
  2. Fritzmann C., Lowenberg J., Wintgens T., and Melin T., State-of-the-Art of Reverse Osmosis Desalination, Desalination. 216, 1-76, 2007.
  3. Lim Y.J., Goh K., Kurihara M., and Wang R., Seawater Desalination by Reverse Osmosis: Current Development and Future Challenges in Membrane Fabrication-A Review, J. Membr. Sci., 629, 119292-119323, 2021.
  4. Hailemariam R.H., Woo Y.C., Damtie M.M., Kim B.C., Park K-D., and Choi J-S., Reverse Osmosis Membrane Fabrication and Modification Technologies and Future Trends: A Review, Adv. Coll. Int. Sci., 276, 102100-102120, 2020.
  5. Khodami S., Babanzadeh S., Mehdipour-Ataei S., Improving the Performance of Novel Polysulfone-Based Membrane via Sulfonation Method: Application to Water Desalination, Appl. Polym. Sci., 48568-48578, 2019.
  6. Babanzadeh S., Mehdipour-Ataei S., Khodami S., Novel Blended Poly(sulfide sulfone)/Poly(ether sulfone) Dense Membranes for Water Treatment, Polym. Adv. Technol., 32,1667-1679, 2021.
  7. Khodami S., Babanzadeh S., and Mehdipour-Ataei S., Novel Pyridine-Based Polysulfone, Sulfonated Polysulfones, and Sonicated Sepiolite-Based Nanocomposites for Water Desalination, Mesopor. Mater., 295, 109951-109962, 2020.
  8. Nahvi R., Babanzadeh S., and Mehdipour-Ataei S., Poly(aryl ether sulfone sulfide)/Flower-Like ZnO Nanocomposites: Synthesis, Characterization and Application as Water Treatment Membrane, Polym. Adv. Technol., 1-12, 2021.
  9. Khodami S., Mehdipour-Ataei S., and Babanzadeh S., Preparation, Characterization, and Performance Evaluation of Sepiolite-Based Nanocomposite Membrane for Desalination, Ind. Eng. Chem., 82,164-172, 2020.
  10. Mehdipour-Ataei S. and Khodami S., Thin Film Nanocomposites from a Novel Poly(keto ether sulfone) to Remove Metal Ions from Wastewater, Polym. Adv. Technol., 33, 1079-1091, 2022.
  11. Li X., Liu Y., Wang J., Gascon J., Li J., and Van der Bruggen B., Metal–Organic Frameworks Based Membranes for Liquid Separation, Chem. Soc. Rev., 46, 7124-7144, 2017.
  12. Li K., Lee B., and Kim Y., High Performance Reverse Osmosis Membrane with Carbon Nanotube Support Layer, J. Membr. Sci., 592, 117358-117368, 2019.
  13. Ibrahim Y., Kassab A., Eid K., Abdullah M.A., I. Ozoemena , and Elzatahry A., Unveiling Fabrication and Environmental Remediation of MXene-Based Nanoarchitectures in Toxic Metals Removal from Wastewater: Strategy and Mechanism, Nanomater, 10, 885-915, 2020.
  14. Wei S., Xie Y., Xing Y., Wang L., Ye H., Xiong X., and Han K., Two-Dimensional Graphene Oxide/MXene Composite Lamellar Membranes for Efficient Solvent Permeation and Molecular Separation, J. Membr. Sci., 582, 414-422, 2019.
  15. Yin C., Xiong B., Liu Q., Li J., Qian L., Zhou Y., and He C., Lateral-Aligned Sulfonated Carbon-Nanotubes/Nafion Composite Membranes with high proton conductivity and improved mechanical properties, J. Membr. Sci., 591, 117356-117375, 2019.
  16. Wang Z., Ma C., Xu C., Sinquefield S.A., Shofner M.L., and Nair S., Graphene Oxide Nanofiltration Membranes for Desalination under Realistic Conditions, Nat. Sustain., 402, 402-408, 2021.
  17. Anasori B., Lukatskaya M.R., and Gogotsi Y., 2D Metal Carbides and Nitrides (MXenes) for Energy Storage, Nat. Rev. Mater., 2,1-17, 2017.
  18. Ho D.H., Choi Y.Y., Jo S.B., Myoung J.-M., and Cho J.H., Sensing with MXenes: Progress and Prospects, Adv. Mater., 33, 2005846-2005878, 2021.
  19. Kwon O., Choi Y., Kang J., Kim J.H., Choi E., Woo Y.C., and Kim D.W., A Comprehensive Review of MXene-Based Water-Treatment Membranes and Technologies: Recent Progress and Perspectives, Desalination, 522, 115448-115464, 2022.
  20. Naguib M., Mashtalir O., Carle J., Presser V., Lu J., Hultman L., and Barsoum M.W., Two-Dimensional Transition Metal Carbides, ACS Nano., 6, 1322-1331, 2012.
  21. Gogotsi Y. and Anasori B., The Rise of MXenes, ACS Nano., 13, 8491-8494, 2019.
  22. Naguib M., Kurtoglu M., Presser V., Lu J., Niu J., Heon M., Hultman L., Gogotsi Y., and Barsoum M.W., Two-Dimensional Nanocrystals: Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2, Adv. Mater., 23, 4207-4222, 2011.
  23. Naguib M., Mochalin V.N., Barsoum M.W., and Gogotsi Y., MXenes: A New Family of Two-Dimensional Materials, Adv. Mater., 26, 992-1005, 2014.
  24. Eom W., Shin H., Ambade R.B., Lee S.H., Lee K.H., Kang D.J., and Han T.H., Large-Scale Wet-Spinning of Highly Electroconductive MXene Fibers, Nat. Commun., 11, 1-7, 2020.
  25. Barsoum M.W., The Mn+1AXN Phases: A New Class of Solids: Thermodynamically Stable Nanolaminates, Prog. Solid State Chem., 28, 201-281, 2000.
  26. Momma K. and Izumi F., VESTA3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data, J. Appl. Crystallogr., 44, 1272-1276, 2011.
  27. Verger L., Xu C., Natu V., Cheng H-M., Ren W., and Barsoum M.W., Overview of the Synthesis of MXenes and Other Ultrathin 2D Transition Metal Carbides and Nitrides, Curr. Opin. Solid State Mater. Sci., 23, 149-163, 2019.
  28. Lipatov A., Alhabeb M., Lukatskaya M.R., Boson A., Gogotsi Y., and Sinitskii A., Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti3C2 MXene Flakes, Adv. Electron. Mater., 2, 1600255-1600273, 2016.
  29. Ghidiu M., Lukatskaya M.R., Zhao M.Q., Gogotsi Y., and Barsoum M.W., Conductive Two-Dimensional Titanium Carbide ‘Clay’ with High Volumetric Capacitance, Nature, 516, 78-81, 2014.
  30. Verger L., Xu C., Natu V., Cheng H.M., and Ren W., An Overview of Recent Advances in the Synthesis and Applications of the Transition Metal Carbide Nanomaterials, Nanomater, 3, 776-790, 2021.
  31. Mashtalir O., Naguib M., Mochalin V.N., Dall’Agnese Y., Heon M., Barsoum M.W., and Gogotsi Y., Intercalation and Delamination of Layered Carbides and Carbonitrides, Nat. Commun., 4,1-7, 2013.
  32. Zhou J., Zha X., Chen Fan Y., Ye Q., Eklund P., and Du S., A Two-Dimensional Zirconium Carbide by Selective Etching of Al3C3 from Nanolaminated Zr3Al3C5,                                                             Chem. Int. Ed. Eng., 55, 5008-50013, 2016.
  33. Halim J., Kota S., Lukatskaya M.R., Naguib M., Zhao M.Q., and Moon E.J., Synthesis and Characterization of 2D Molybdenum Carbide (MXene), Adv. Funct. Mater., 26, 3118-3127, 2016.
  34. Yu X., Cai X., Cui H., Lee S.-W., Yu X.-F., and Liu B., Fluorine-Free Preparation of Titanium Carbide MXene Quantum Dots with High Near-Infrared Photothermal Performances for Cancer Therapy, Nanoscale, 9, 17859-17864, 2017.
  35. Hu T., Hu M., Li Z., Zhang H., Zhang C., and Wang J., Interlayer Coupling in Two-Dimensional Titanium Carbide MXenes, Chem. Chem. Phys., 18, 20256-20260, 2016.
  36. Halim J., Lukatskaya M.R., Cook K.M., Lu J., Smith C.R., Naslund L.A., and Barsoum M.W., Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films, Chem. Mater., 26, 2374-2381, 2014.
  37. Gogotsi Y., Transition Metal Carbides Go 2D, Nat. Mater., 14, 1079-1080, 2015.
  38. Xu C., Wang L., Liu Z., Chen L., Guo J., and Kang N., Large-Area High-Quality 2D Ultrathin Mo2C Superconducting Crystals, Mater., 14, 1135-1149, 2015.
  39. Jia J., Xiong T., Zhao L., Wang F., Liu H., Hu R., and Chen S., Ultrathin N-Doped Mo2C Nanosheets with Exposed Active Sites as Efficient Electrocatalyst for Hydrogen Evolution reactions, ACS Nano., 11,12509-12518, 2017.
  40. Alhabeb M., Maleski K., Anasori B., Lelyukh P., Clark L., Sin S., and Gogotsi Y., Guidelines for Snthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene), Chem. Mater., 29, 7633-7644, 2017.
  41. Geng D., Zhao X., Li L., Song P., Tian B., Liu W., Chen J., Shi D., Lin M., Zhou W., and Ping K.L., Controlled Growth of Ultrathin Mo2C Superconducting Crystals on Liquid Cu Surface, 2D Mater., 4, 011012-011023, 2017.
  42. Rezakazemi M., Arabi Shamsabadi A., Lin H., Luis P., Ramakrishna S., and Aminabhavi T.M., Sustainable MXenes-Based Membranes for Highly Energy-Efficient Separations, Sustain. Energy Rev., 143, 110878-110893, 2021.
  43. Wang H.-W., Naguib M., Page K., Wesolowski D.J., and Gogotsi Y., Resolving the Structure of Ti3C2Tx MXenes Through Multilevel Structural Modeling of the Atomic Pair Distribution Function, Chem. Mater., 28, 349-359, 2016.
  44. Li Y., Shao H., Lin Z., Lu J., Liu L., Duployer B., Persson P.O., Eklund P., Hultman L., and Li M., A General Lewis Acidic Etching Route for Preparing MXenes with Enhanced Electrochemical Performance in Non-Aqueous Electrolyte, Nat. Mater., 19, 894-899, 2020.
  45. Kamysbayev V., Filatov A.S., Hu H., Rui X., Lagunas F., Wang D., Klie R.F., and Talapin D.V., Covalent Surface Modifications and Superconductivity of Two-Dimensional Metal Carbide MXenes, Science, 369, 979-983, 2020.
  46. Jawaid A., Hassan A., Neher G., Nepal D., Pachter R., Kennedy W.J., Ramakrishnan S., and Vaia R.A., Halogen Etch of Ti3AlC2 MAX Phase for MXene Fabrication, ACS Nano., 15, 2771-2777, 2021.
  47. Kim J.H., Choi Y., Kang J., Choi E., Choi S.E., Kwon O., and Kim D.W., Scalable Fabrication of Deoxygenated Graphene Oxide Nanofiltration Membrane by Continuous Slot-Die Coating, J. Membr. Sci., 612 ,118454-118470, 2020.
  48. Hu T., Li Z., Hu M., Wang J., Hu Q., and Li Q., Chemical Origin of Termination-Functionalized MXenes: Ti3C2T2 as a Case Study, J. Phys. Chem., 121, 19254-19261, 2017.
  49. Lu Z., Wei Y., Deng J., Ding L., Li Z.-K., and Wang H., Self-Crosslinked MXene (Ti3C2Tx) Membranes with Good Antiswelling Property for Monovalent Metal Ion Exclusion, ACS Nano, 13, 10535-10544, 2019.
  50. Wu W., Shi Y., Liu G., Fan X., and Yu Y., Recent Development of Graphene Oxide Based Forward Osmosis Membrane for Water Treatment: A Critical Review, Desalination, 491, 114452-11465, 2020.
  51. Riazi H., Anayee M., Hantanasirisakul K., Shamsabadi A.A., Anasori B., and Gogotsi Y., Surface Modification of a MXene by an Aminosilane Coupling Agent, Adv. Mater. Interfaces., 20,1902008-1902018, 2020.
  52. Ma X., Zhu X., Huang C., and Fan J., Revealing the Effects of Terminal Groups of MXene on the Water Desalination Performance, J. Membr. Sci., 647, 120334-120343, 2022.
  53. Ren C.E., Hatzell K.B., Alhabeb M., Ling Z., Mahmoud K.A., and Gogotsi Y., Charge-and Size-Selective Ion Sieving through Ti3C2Tx MXene Membranes, J. Phys. Chem. Lett., 6, 4026-4031, 2015.
  54. Han R., Ma X., Xie Y., Teng D., and Zhang S., Preparation of a New 2D MXene/PES Composite Membrane with Excellent Hydrophilicity and High Flux, RSC Adv., 7, 56204-56210, 2017.
  55. Kang K.M., Kim D.W., Ren C.E., Cho K.M., Kim S.J., Choi J.H., Nam Y.T., Gogotsi Y., and Jung H.-T., Selective Molecular Separation on Ti3C2Tx–Graphene Oxide Membranes during Pressure-Driven Filtration: Comparison with Graphene Oxide and MXenes, ACS Appl. Mater. Interfaces., 9, 44687-44694, 2017.
  56. Ding L., Wei Y., Wang Y., Chen H., Caro J., and Wang H., A Two-Dimensional Lamellar Membrane: MXene Nanosheet Stacks, Angew. Chem. Int. Ed., 56, 1825-1829, 2017.
  57. Pandey R.P., Rasool K., Madhavan V.E., Aissa B., Gogotsi Y., and Mahmoud K.A., Ultrahigh-flux and Fouling-Resistant Membranes Based on Layered Silver/MXene (Ti3C2Tx) Nanosheets, J. Mater. Chem. A, 6, 3522-3533, 2018.
  58. Ding M., Xu H., Chen W., Kong Q., Lin T., Tao H., Zhang K., Liu Q., Zhang K., and Xie Z., Construction of a Hierarchical Carbon Nanotube/MXene Membrane with Distinct Fusiform Channels for Efficient Molecular Separation, J. Mater. Chem. A, 8 , 22666-22673, 2020.
  59. Karahan H.E., Goh K., Zhang C., Yang E., Yıldırım C., Chuah C.Y., Ahunbay M.G., Lee J., Tantekin-Ersolmaz S.B., Chen Y., and Bae T.H., MXene Materials for Designing Advanced Separation Membranes, Mater., 32, 1906697-1906720, 2020.
  60. Jie S., Guozhen L., Yufan J., Quan L., Long C., and Kecheng G., 2D MXene Nanofilms with Tunable Gas Transport Channels, Adv. Funct. Mater., 28, 1801511-1801526, 2018.
  61. Wu Y., Li X., Zhao H., Yao F., Cao J., Chen Z., Huang X., Wang D., and Yang Q., Recent Advances in Transition Metal Carbides and Nitrides (MXenes): Characteristics, Environmental Remediation and Challenges, Chem. Eng. J., 418, 129296-129316, 2021.
  62. Wang W., Wei Y., Fan J., Cai J., Lu Z., Ding L., and Wang H., Recent Progress of Two-Dimensional Nanosheet Membranes and Composite Membranes for Separation Applications, Front. Chem. Sci. Eng., 15, 793-819, 2021.
  63. Zhou Z., Liu J., Zhang X., Tian D., Zhan Z., and Lu C., Ultrathin MXene/Calcium Alginate Aerogel Film for High-Performance Electromagnetic Interference Shielding, Adv. Mater. Interfac., 6, 1802040-1802055, 2019.
  64. Mohammadi V.A., Moncada J., Chen H., Kayali E., Orangi J., Carrero C.A., and Beidaghi M., Thick and Freestanding MXene/PANI Pseudocapacitive Electrodes with Ultrahigh Specific Capacitance, J. Mater. A, 6, 22123-22133, 2018.
  65. Ihsanullah I. and Bilal, Potential of MXene-Based Membranes in Water Treatment and Desalination: A Critical Review, Chemosphere, 303,135234-135256, 2022.
  66. Yang S., Zhang P., Wang F., Ricciardulli A.G., Martin R.L., Blom P.W.M., and Feng X., Fluoride-Free Synthesis of Two-Dimensional Titanium Carbide (MXene) Using a Binary Aqueous System, Chem., 130, 15717-15721, 2018.
  67. Zhang Y., Wang Y., Jiang Q., El-Demellawi J.K., Kim H., and Alshareef H.N., MXene Printing and Patterned Coating for Device Applications, Mater., 32, 1908486-1908512, 2020.
  68. Li J., Li X., and Van der Bruggen B., An MXene-Based Membrane for Molecular Separation, Sci: Nano., 7, 1289-1304, 2020.
  69. Gao J., Feng Y., Guo W., and Jiang L., Nanofluidics in Two-Dimensional Layered Materials: Inspirations from Nature, Chem. Soc. Rev., 46, 5400-5424, 2017.
  70. Ahmadijokani F., Mohammadkhani R., Ahmadipouya S., Shokrgozar A., Rezakazemi M., and Molavi H., Superior Chemical Stability of UiO-66 Metal-Organic Frameworks (MOFs) for Selective Dye Adsorption, Chem. Eng. J., 399, 125346-125361,2020.
  71. Ahmadijokani F., Tajahmadi S., Bahi A., Molavi H., Rezakazemi M., and Ko F., Ethylenediamine-Functionalized Zr-Based MOF for Efficient Removal of Heavy Metal Ions From Water, Chemosphere, 264, 128466-128481, 2021.
  72. Ahmadipouya S., Heidarian Haris M., Ahmadijokani F., Jarahiyan A., Molavi H., and Matloubi Moghaddam F., Magnetic Fe3O4@UiO-66 Nanocomposite for Rapid Adsorption of Organic Dyes from Aqueous Solution, J. Mol. Liq., 322, 114910-114929, 2021.
  73. Mirqasemi M.S., Homayoonfal M., and Rezakazemi M., Zeolitic Imidazolate Framework Membranes for Gas and Water Purification, Environ. Chem. Lett., 18, 1-52, 2020.
  74. Varoon K., Zhang X., Elyassi B., Brewer D.D., Gettel M., and Kumar S., Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane, Science, 334, 72-75, 2011.
  75. Kim H.W., Yoon H.W., Yoon S.-M., Yoo B.M., Ahn B.K., and Cho Y.H., Selective Gas Transport through Few-Layered Graphene and Graphene Oxide Membranes, Science, 342, 91-95, 2013.
  76. Zhang Y., Chen D., Li N., Xu Q., Li H., He J., and Lu J., High-performance and Stable Two-Dimensional MXene-Polyethyleneimine Composite Lamellar Membranes for Molecular Separation, ACS Appl. Mater. Interfaces, 14, 10237-10245,2022.
  77. Ma X., Zhu X., Huang C., and Fan J., Exploring the Potential of MXene Nanoslit for Water Desalination through Molecular Dynamics Simulations, Desalination, 556,116560-116570, 2023.
  78. Solangi N.H., Mubarak N.M., Karri R.R., Mazari S.A., and Koduru J.R., Holistic Mechanism of Graphene Oxide and MXene-Based Membrane for the Desalination Processes, Desalination, 568, 117035-117055, 2023.
  79. Zhou P., Zhu Q., Sun X., Liu L., Cai Z., and Xu J., Recent Advances in MXene-Based Membrane for Solar-Driven Interfacial Evaporation Desalination, Chem. Eng. J., 464, 142508-142526, 2023.
  80. Foller T., Wang H., and Joshi R., Rise of 2D Materials-Based Membranes for Desalination, Desalination, 536, 115851-115855, 2022.
  81. Asif M.B., Iftekhar S., Maqbool T., Pramanik B.K., Tabraiz S., Sillanp M., and Zhang Z., Two-Dimensional Nanoporous and Lamellar Membranes for Water Purification: Reality or a Myth, Chem. Eng. J., 432, 134335-134343, 2022.
  82. Liu G., Shen J., Liu Q., Liu G., Xiong J., Yang J., and Jin W., Ultrathin Two-Dimensional MXene Membrane for Pervaporation Desalination, J. Membr. Sci., 548, 548-558, 2018.
  83. Arabi Shamsabadi A., Sharifian Gh M., Anasori B., and Soroush M., Antimicrobial Mode-of-Action of Colloidal Ti3C2Tx MXene Nanosheets, ACS Sustain. Chem. Eng., 6, 6586-16596, 2018.
  84. Rasool K., Mahmoud K.A., Johnson D.J., Helal M., Berdiyorov G.R., and Gogotsi Y., Efficient Antibacterial Membrane Based on Two-Dimensional Ti3C2Tx (MXene) Nanosheets, Sci. Rep., 7, 1-11, 2017.
  85. Huang K., Li Z., Lin J., Han G., and Huang P., Two-Dimensional Transition Metal Carbides and Nitrides (MXenes) for Biomedical Applications, Chem. Soc. Rev., 47, 5109-5124, 2018.
  86. Li Z.K., Liu Y., Li L., Wei Y., Caro J., and Wang H., Ultra-thin Titanium Carbide (MXene) Sheet Membranes for High-Efficient Oil/Water Emulsions Separation,                                                      J. Membr. Sci., 592, 117361-117386, 2019.
  87. Zeng G., Wei K., Zhang H., Zhang J., Lin Q., Cheng X., and Chiao Y.H., Ultra-High Oil-Water Separation Membrane Based on Two-Dimensional MXene (Ti3C2Tx) by Co-Incorporation of Halloysite Nanotubes and Polydopamine, Appl. Clay Sci., 211, 106177-106198, 2021.
  88. Ray S.S., Sharma T.S.K., Singh R., Ratley A., Choi W.M., Ahn Y-H., Sangeetha D., and Kwon Y.N., Towards the Next Generation Improved throughput MXene-Based Membrane for Environmental Applications: A Holistic Review, J. Environ. Chem. Eng., 11, 110243-110262, 2023.
  89. Ihsanullah I., Potential of MXenes in Water Desalination: Current Status and Perspectives, Nano-Micro Lett., 12, 72-96, 2020.
  90. Ding L., Li L., Liu Y., Wu Y., Lu Z., and Deng J., Effective Ion Sieving with Ti3C2Tx MXene Membranes for Production of Drinking Water from Seawater, Nat. Sustain., 3, 296-302, 2020.
  91. Sun Y., Xu Z., Zhuang Y., Liu G., Jin W., and Liu G., Tunable Dextran Retention of MXene-TiO2 Mesoporous Membranes by Adjusting the 2D MXene Content, 2D Mater. 5, 045003-045012, 2018.
  92. Liu G., Shen J., Liu Q., Liu G., Xiong J., Yang J., and Jin W., Ultrathin Two-Dimensional MXene Membrane for Pervaporation Desalination, Membr. Sci., 548, 548-558, 2018.
  93. Yin J., Zhu G., and Deng B., Multi-Walled Carbon Nanotubes (MWNTs)/Polysulfone (PSU) Mixed Matrix Hollow Fiber Membranes for Enhanced Water Treatment, Membr. Sci., 437, 237-248, 2013.
  94. Zhao H., Wu L., Zhou Z., Zhang L., and Chen H., Improving the Antifouling Property of Polysulfone Ultrafiltration Membrane by Incorporation of Isocyanate-Treated Graphene Oxide, Chem. Chem. Phys., 15, 9084-9092, 2013.
  95. Wu H., Tang B., AND Wu P., Development of Novel SiO2–GO Nanohybrid/Polysulfone Membrane with Enhanced Performance, Membr. Sci., 451, 94-102, 2014.
  96. Khan A., Sherazi T.A., Khan Y., Li S., Naqvi S.A.R., and Cui Z., Fabrication and Characterization of Polysulfone/Modified Nanocarbon Black Composite Antifouling Ultrafiltration Membranes, Membr. Sci., 554, 71-82, 2018.
  97. Shen Z., Chen W., Xu H., Yang W., Kong Q., Wang A., Ding M., and Shang J., Fabrication of a Novel Antifouling Polysulfone Membrane with in Situ Embedment of Mxene Nanosheets, J. Environ. Res. Public Health, 16, 4659-4675, 2019.
  98. Sun Y., Li S., Zhuang Y., Liu G., Xing W., and Jing W., Adjustable Interlayer Spacing of Ultrathin MXene-Derived Membranes for Ion Rejection, Membr. Sci., 591, 117350-117362, 2019.
  99. Wang J., Zhang Z., Zhu J., Tian M., Zheng S., Wang F., Wang X., and Wang L., Ion Sieving by a Two-dimensional Ti3C2Tx Alginate Lamellar Membrane with Stable Interlayer Spacing, Nat. Commun., 11, 1-10, 2020.