غشای انتقال تسهیل‌یافته دو-مسیری برای جداسازی CO2 با هم‌افزایی واکنش‌های افزایش هسته‌دوستی و کمپلکس‌ساز π : بررسی آزمایشگاهی و شبیه‌سازی مولکولی

نوع مقاله : پژوهشی

نویسندگان

1 بهبهان، دانشگاه صنعتی خاتم الانبیا بهبهان، دانشکده فنی، گروه مهندسی شیمی، کد پستی 63716-63973

2 بهبهان، دانشگاه صنعتی خاتم الانبیا بهبهان، دانشکده فنی، گروه مهندسی مکانیک، کد پستی 63716-63973

چکیده

فرضیه: پلی‌اتر قطعه-آمید (PEBA) یکی از مناسب­‌ترین مواد پلیمری برای ساخت غشاهای جداساز CO2 است. از آنجا که سازوکار جداسازی در غشاهای ساخته‌شده از این ماده پلیمری معمولاً براساس سازوکار حل‌پذیری-نفوذ بوده، عملکرد جداسازی در این غشاها با محدودیت Trade-off روبه‌رو است. این محدودیت که مانع از افزایش هم‌زمان تراوایی و گزینش‌پذیری می‌شود، مشکل مهمی بوده که مانع از استفاده گسترده این غشاها در صنعت شده است. در این میان، استفاده از ترکیباتی برای افزودن سازوکار انتقال تسهیل‌یافته به سازوکار جداسازی، راه‌حل مناسبی برای غلبه بر این مشکل است.
روش­‌ها: در راستای غلبه بر محدودیت Trade-off در غشاهای پلیمری در این مطالعه غشای انتقال تسهیل‌یافته دو-مسیری پلی‌اتر قطعه-آمید دارای دو نوع حامل آنیلین و آلومینا ساخته شد. مولکول‌های آنیلین به‌دلیل قابلیت ایجاد واکنش افزایش هسته‌دوستی با CO2 انتخاب شده و ذرات آلومینا به‌عنوان حامل‌های برقرارکننده واکنش کمپلکس‌ساز π با مولکول‌های CO2 استفاده شدند. وجود این دو حامل در کنار هم در ماتریس پلیمری به ایجاد سازوکار انتقال تسهیل‌یافته دو مسیری منجر شد.
یافته­‌ها: در اثر افزودن دو نوع حامل آنیلین و آلومینا به ماتریس PEBA، تراوایی CO2 نسبت به غشای خالص افزایش 2.4 برابری داشته و گزینش‌پذیری CO2/N2 نیز نسبت به غشای خالص 1.2 برابر شد. نتایج حاصل از شبیه‌سازی مولکولی نشان داد، افزایش تراوایی CO2 به‌دلیل افزایش ضریب نفوذ آن در عرض غشا بود که به‌کمک مسیرهای ایجادشده با آلومینا و آنیلین در ماتریس پلیمری میسر شد. مقایسه تراوایی و گزینش‌پذیری غشای ساخته‌شده با سایر کارها در منحنی Robeson نشان داد، غشای حاصل به‌آسانی بر محدودیت Trade-off غلبه کرده، از مرز Robeson عبور می‌کند تا به غشایی مناسب با کاربرد صنعتی در راستای جداسازی CO2 تبدیل شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Two-way facilitated transport membrane for CO2 separation with synergy of nucleophilic addition and π-complexing reactions: Molecular simulation and experimental study

نویسندگان [English]

  • Mahdi Elyasi Kojabad 1
  • Parya Amirabedi 1
  • Masoud Dorfeshan 2
1 Faculty of Engineering, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
2 Faculty of Engineering, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
چکیده [English]

Hypothesis: PEBA, also known as polyether-block-amide, has emerged as a highly favorable polymer material for the production of CO2 separator membranes. The membranes made from PEBA rely on the solution-diffusion mechanism for separation. However, the trade-off limitation hinders the enhancement of both permeability and selectivity, posing a crucial challenge in the widespread adoption of these membranes in various industries. To address this issue, incorporating compounds that create facilitate transport mechanism into the separation process proves to be a viable solution.
Methods: To address the trade-off limitation in polymer membranes, a novel two-way facilitated transfer membrane was developed in this research. This membrane consisted of a PEBA matrix with two different carriers. Aniline was selected for its nucleophilic addition reaction towards CO2, while alumina particles served as carriers for π-complexation reactions. The combination of these two carriers within the polymer matrix resulted in the establishment of a two-way facilitated transport mechanism.
Findings: As a result of adding two types of carriers, aniline and alumina, to the PEBA matrix, the permeability of CO2 increased 4.2 times compared to the pure membrane, and the CO2/N2 selectivity also increased 2.1 times compared to the pure membrane, demonstrating the high potential of these two carriers in enhancing separation performance. Molecular simulation results showed that the increase in CO2 permeability was due to the increase in its diffusion coefficient within the membrane thickness, facilitated by the pathways created by alumina and aniline in the polymer matrix. Comparison of the permeability and selectivity of the membrane with other works on the Robeson curve showed that the resulting membrane was able to easily overcome the trade-off limitation, surpass the Robeson boundary, and transform into a membrane suitable for industrial applications in CO2 separation.

کلیدواژه‌ها [English]

  • Membrane
  • Polyether-block-amide
  • Molecular simulation
  • Aniline
  • Alumina
  1. Zhang X., Xiong W., Peng L., Wu Y., and Hu X., Highly Selective Absorption Separation of H2S and CO2 from CH4 by Novel Azole-Based Protic Ionic Liquids, AIChE J., 66, 2020.
  2. Patil T., Dharaskar S., Pandya J., Shinde S., Sasi S., Sillanpaa M., Yoo C., and Sekhara T.C., Efficient CO2/CH4 Separation Using [Bmim][Ac]/Pebax-1657 Supported Ionic Liquid Membranes and Its Prediction by Density Functional Theory, Int. J. Greenh. Gas Control., 124, 103856, 2023.
  3. Ahmadi R., Sanaeepur H., Ebadi Amooghin A., Heydari A., Modification of Poly(ether-b-amide) Membrane Properties Using Glycerol for CO2/N2 Gas Separation, Iran. J. Polym. Sci. Technol. (Persian), 31, 461-474, 2018.
  4. Du X., Feng S., Luo J., Zhuang Y., Song W., Li X., and Wan Y., Pebax Mixed Matrix Membrane with Bimetallic CeZr-MOFs to Enhance CO2 Separation, Sep. Purif. Technol., 322, 124251, 2023.
  5. Elyasi Kojabad M.E., Momeni M., Babaluo A.A., and Vaezi M.J., PEBA/PSf Multilayer Composite Membranes for CO2 Separation: Influence of Dip Coating Parameters, Chem. Eng. Technol., 43, 1451-1460, 2020.
  6. Abedini R., Omidkhah M., and Dorosti F., CO2/CH4 Separation by a Mixed Matrix Membrane of Polymethylpentyne/MIL-53 Particles, Iran. J. Polym. Sci. Technol. (Persian), 27, 351-337, 2014.
  7. Momeni M., Kojabad M.E., Khanmohammadi S., Farhadi Z., Ghalandarzadeh R., Babaluo A., and Zare M., Impact of Support on the Fabrication of Poly(ether-b-amide) Composite Membrane and Economic Evaluation for Natural Gas Sweetening, J. Nat. Gas Sci. Eng., 62, 236-246, 2019.
  8. Sadrzadeh M., Amirilargani M., Shahidi K., and Mohammadi T., Gas Permeation through a Synthesized Composite PDMS/PES Membrane, J. Membr. Sci., 342, 236-250, 2009.
  9. Amooghin A.E., Mashhadikhan S., Sanaeepur H., Moghadassi A., Matsuura T., and Ramakrishna S., Substantial Break throughs on Function-Led Design of Advanced Materials Used in Mixed Matrix Membranes (MMMs): A New Horizon for Efficient CO2 Separation, Prog. Mater. Sci., 102, 222-295, 2019.
  10. Min S.B., Kang M., Han Y.-J., An I., Park B.R., Kim J.H., and Kim J.-H., Chitosan/Ag(I) Thin-Film Composite Membranes with High CO/N2 Separation Performance by Facilitated Transport: Effect of Preparation and Operation Conditions, Sep. Purif. Technol., 328, 124931, 2024.
  11. Kojabad M.E., Babaluo A., Tavakoli A., and Kahnamouei H.G.A., Novel High-Performance Facilitated Transport Membrane by Simultaneously Using Semi-Mobile and Fixed Carriers for CO2/N2 Separation, Process Saf. Environ. Prot., 156, 304-314, 2021.
  12. Wang S., Liu Y., Zhang M., Shi D., Li Y., Peng D., He G., Wu H., Chen J., and Jiang Z., Comparison of Facilitated Transport Behavior and Separation Properties of Membranes with Imidazole Groups and Zinc Ions as CO2 Carriers, J. Membr. Sci., 505, 44-52, 2016.
  13. Li Y., Xin Q., Wu H., Guo R., Tian Z., Liu Y., Wang S., He G., Pan F., and Jiang Z., Efficient CO2 Capture by Humidified Polymer Electrolyte Membranes with Tunable Water State, Energy Environ. Sci., 7, 1489-1499, 2014.
  14. Kojabad M.E., Babaluo A., Tavakoli A., Sofla R.L.M., and Kahnamouei H.G., Comparison of Acidic and Basic Ionic Liquids Effects on Dispersion of Alumina Particles in Pebax Composite Membranes for CO2/N2 Separation: Experimental Study and Molecular Simulation, J. Environ. Chem. Eng., 9, 106116, 2021.
  15. Zhang X., Zhang T., Wang Y., Li J., Liu C., Li N., and Liao J., Mixed-Matrix Membranes Based on Zn/Ni-ZIF-8-PEBA for High Performance CO2 Separation, J. Membr. Sci., 560, 38-46, 2018.
  16. Shamsabadi A.A., Seidi F., Salehi E., Nozari M., Rahimpour A., and Soroush M., Efficient CO2-Removal Using Novel Mixed-Matrix Membranes with Modified TiO2 Nanoparticles, J. Mater. Chem., 4011-4025, 2017.
  17. Kojabad M.E., Babaluo A., and Tavakoli A., A Novel Semi-Mobile Carrier Facilitated Transport Membrane Containing aniline/Poly(ether-block-amide) for CO2/N2 Separation: Molecular Simulation and Experimental Study, Sep. Purif. Technol., 266, 118494, 2021.
  18. Huang G., Pournaghshband A., Muchtar A., and Sakurai K., Pebax/Ionic Liquid Modified Graphene Oxide Mixed Matrix Membranes for Enhanced CO2 Capture, J. Membr. Sci., 565 370-379, 2018.
  19. Karamouz F., Maghsoudi H., and Yegani R., Synthesis of High-Performance Membranes for CO2/CH4 Separation, Chem. Eng. Technol., 41, 1767-1775, 2018.
  20. Hoon C., Tocci E., Fontananova E., Bahattab M.A., Aljlil S.A., and Drioli E., Mixed Matrix Membranes Containing Functionalized Multiwalled Carbon Nanotubes: Mesoscale Simulation and Experimental Approach for Optimizing Dispersion, J. Membr. Sci., 514, 195–209, 2016.
  21. Pazirofteh M., Abdolmajidi M., Samipoorgiri M., Dehghani M., and Mohammadi A.H., Separation and Transport Specification of a Novel PEBA-1074/PEG-400/TiO2 Nanocomposite Membrane for Light Gas Separation: Molecular Simulation Study, J. Mol. Liq., 291, 111268, 2019.
  22. Pazirofteh M., Dehghani M., Niazi S., Mohammadi A.H., and Asghari M., Molecular Dynamics Simulation and Monte Carlo Study of Transport and Structural Properties of PEBA 1657 and 2533 Membranes Modified by Functionalized POSS-PEG Material, J. Mol. Liq., 241, 646-653, 2017.
  23. Takagaki A., Jung C., and Hayashi S., Solid Lewis Acidity of Boehmite Y-AlO(OH) and Its Catalytic Activity for Transformation of Sugars, RSC Adv., 43785-43791, 2014.
  24. Sanaeepur H., Ahmadi R., Ebadi A., and Ghanbari D., A Novel Ternary Mixed Matrix Membrane Containing Glycerol-Modified Poly(ether-block-amide) (Pebax 1657)/Copper Nanoparticles for CO2 Separation, J. Membr. Sci., 573, 234-246, 2019.
  25. Norouzi A.M., Elyasi M., Chapalaghi M., Hosseinkhani A., Arabloo A., and Nemati E., Polyester-Based Polyurethane Mixed-Matrix Membranes Incorporating Carbon Nanotube-Titanium Oxide Coupled Nanohybrid for Carbon Dioxide Capture Enhancement: Molecular Simulation and Experimental Study, J. Mol. Liq., 360, 119540, 2022.
  26. Amini Z. and Asghari M., Preparation and Characterization of Ultra-Thin Polyether Block Amide/Nanoclay Nanocomposite Membrane for Gas Separation, Appl. Clay Sci., 166, 230-241, 2018.
  27. Golzar K., Modarress H., and Amjad-iranagh S., Separation of Gases by Using Pristine, Composite and Nanocomposite Polymeric Membranes: A Molecular Dynamics Simulation Study, J. Memb. Sci., 539, 238-256, 2017.
  28. Dong L., Chen M., Wu X., Shi D., Dong W., Zhang H., and Zhang C., Multi-Functional Polydopamine Coating: Simultaneous Enhancement of Interfacial Adhesion and CO2 Separation Performance of Mixed Matrix Membranes, New J. Chem., 40, 9148-9159, 2016.
  29. Zhou T., Luo L., Hu S., Wang S., Zhang R., and Wu H., Janus Composite Nanoparticle-Incorporated Mixed Matrix Membranes for CO2 Separation, J. Membr. Sci., 489, 1-10, 2015.
  30. Mosadegh M., Amirkhani F., Riasat H., and Asghari M., Effect of Nafion and APTEOS Functionalization on Mixed Gas Separation of PEBA-FAU Membranes: Experimental Study and MD and GCMC Simulations, Sep. Purif. Technol., 247, 116981, 2020.
  31. Isanejad M. and Mohammadi T., Effect of Amine Modification on Morphology and Performance of Poly(ether-block-amide)/Fumed Silica Nanocomposite Membranes for CO2/CH4 Separation, Mater. Chem. Phys., 205, 303-314, 2018.
  32. Ghadimi A., Amirilargani M., Mohammadi T., and Kasiri N., Preparation of Alloyed Poly(ether-block-amide)/Poly(ethylene glycol diacrylate) Membranes for Separation of CO2/H2 (Syngas Application), J. Membr. Sci., 458, 14-26, 2014.
  33. Karamouz F., Maghsoudi H., and Yegani R., Synthesis and Characterization of High Permeable PEBA Membranes for CO2/CH4 Separation, J. Nat. Gas Sci. Eng., 35, 980-985, 2016.
  34. Meshkat S., Kaliaguine S., and Rodrigue D., Mixed Matrix Membranes Based on Amine and Non-amine MIL-53(Al) in Pebax®MH-1657 for CO2 Separation, Sep. Purif. Technol., 200, 177-190, 2018.
  35. Meshkat S., Kaliaguine S., and Rodrigue D., Enhancing CO2 Separation Performance of Pebax®MH-1657 with Aromatic Carboxylic Acids, Sep. Purif. Technol., 212, 901-912, 2019.
  36. Shamsabadi A.A., Seidi F., Salehi E., Nozari M., Rahimpour A., and Soroush M., Efficient CO2-Removal Using Novel Mixed-Matrix Membranes with Modified TiO2 Nanoparticles, J. Mater. Chem. A, 5, 4011-4025, 2017.
  37. Habibiannejad S.A., Aroujalian A., and Raisi A., Pebax-1657 Mixed Matrix Membrane Containing Surface Modified Multi-Walled Carbon Nanotubes for Gas Separation, RSC Adv., 6, 79563-79577, 2016.
  38. Wu H., Li X., Li Y., Wang S., Guo R., Jiang Z., Wu C., Xin Q., and Lu X., Facilitated Transport Mixed Matrix Membranes Incorporated with Amine Functionalized MCM-41 for Enhanced Gas Separation Properties, J. Membr. Sci., 465, 78-90, 2014.
  39. Amirkhani F., Mosadegh M., Asghari M., and Javad M., The Beneficial Impacts of Functional Groups of CNT on Structure and Gas Separation Properties of PEBA Mixed Matrix Membranes, Polym. Test., 82, 106285, 2020.
  40. Zhu H., Yuan J., Zhao J., Liu G., and Jin W., Enhanced CO2/N2 Separation Performance by Using Dopamine/Polyethyleneimine-grafted TiO2 Nanoparticles Filled PEBA Mixed-Matrix Membranes, Sep. Purif. Technol., 214, 78-86, 2018.