خواص فیزیکی-شیمیایی و زیست‌سازگاری هیدروژل‌‌های بر پایه لاپونیت و کیتوسان اصلاح‌شده با تغییر جانشینی گروه‌ آمینی

نوع مقاله : پژوهشی

نویسندگان

1 تهران، دانشگاه صنعتی امیرکبیر، دانشکده مهندسی پزشکی، گروه پلیمرهای زیست‌سازگار و مهندسی بافت، صندوق پستی ۴۴۱۳-۱۵۸۷۵

2 تهران، پژوهشگاه پلیمر و پتروشیمی ایران، دانشکده علوم پلیمر، گروه گروه پلیمرهای زیست‌سازگار، صندوق پستی 112/14975

چکیده

فرضیه: مطالعه حاضر با هدف سنتز و شناسایی هیدروژل تزریق‌پذیر بر پایه کیتوسان-لاپونیت انجام شد. ابتدا، از واکنش کیتوسان با گلیسیدیل تری‌متیل آمونیوم کلرید (GTMAC)، کیتوسان محلول در آب سنتز شد و سپس از ترکیب آن با نانوذرات لاپونیت، هیدروژل تزریق‌پذیر تهیه شد.
روش‌ها: کیتوسان با نسبت‌های 1:1، 3:1 و 6:1 با GTMAC واکنش داده شد. با آزمون‌های طیف‌سنجی زیرقرمز تبدیل فوریه و رزونانس مغناطیسی هسته‌ای، سنتز موفقیت آمیز کیتوسان محلول در آب تأیید شد. افزون بر آن؛ پایداری گرمایی، حل‌پذیری در آب، قابلیت جذب و حفظ رطوبت، پتانسیل زتا، زیست‌سازگاری و فعالیت ضدباکتریایی نمونه‌های اصلاح‌شده بررسی و با کیتوسان خالص مقایسه شد. سپس، نمونه بهینه کیتوسان اصلاح‌شده با نسبت 1:1 با لاپونیت ترکیب شد و خواص فیزیکی-شیمیایی، تزریق‌پذیری، خودترمیم‌شوندگی، رئولوژیکی و زیست‌سازگاری این هیدروژل بررسی شد.
یافته‌ها: درصد جایگزینی نمونه‌های QCS1، QCS3 و QCS6 به ترتیب بیشتر از %25، %50 و %74 محاسبه شد. دو نمونه QCS3 و QCS6 حل‌‌پذیری بهتری در pHهای مختلف آب نشان دادند. با افزایش درصد جایگزینی، بار سطحی مثبت‌تر شده و فعالیت ضدباکتریایی ارتقا یافت. با وجود این ، بیشتربودن درصد زنده‌مانی یاختهها در نمونه QCS3  آن را برای کاربردهای زیستی مناسب‌تر می‌کند. پس از انتخاب نمونه بهینه و تشکیل هیدروژل، برهم‌کنش‌های یونی و هیدروژنی بین QCS/LAP در هیدروژل با FTIR تأیید شد. تجزیه عنصری، توزیع یکنواخت لاپونیت در هیدروژل را نشان داد. تصاویر میکروسکوپ الکترونی کاهش اندازه منافذ هیدروژل را پس از افزودن لاپونیت نشان داد. بررسی‌های رئولوژیکی بیانگر افزایش 5 برابری مدول مختلط برشی پس از افزودن لاپونیت بود. همچنین، زمان ژل‌شدن هیدروژل حدود 5min محاسبه شد. درصد زنده‌‌مانی سلولی حاصل از آزمون MTT پس از زمان 72h ،93% بود. از این‌رو، هیدروژل‌ ترکیبی معرفی‌شده، می‌تواند انتخاب مناسبی برای کاربردهای مهندسی بافت و دارورسانی باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Studying the Physicochemical and Biological Properties of Hydrogels Based on Laponite and Modified Chitosan through the Substitution of the Amino Group

نویسندگان [English]

  • Maryam Nezadi 1
  • Hamid Keshvari 1
  • Fatemeh Shokrolahi 2
  • Parvin Shokrollahi 2
1 Student, Amirkabir university
2 IPPI
چکیده [English]

Hypothesis: This study was conducted with the aim of synthesizing and identifying an injectable hydrogel based on chitosan/laponite. First, water-soluble chitosan was obtained from the reaction of chitosan/glycidyl trimethylammonium chloride (GTMAC). Then, an injectable hydrogel was prepared from its combination with Laponite nanoparticles.
Methods: Chitosan was reacted with GTMAC with ratios of 1:1, 3:1 and 6:1. Using FTIR and H1NMR, the successful synthesis of water-soluble chitosan was confirmed. Besides that; Thermal stability, solubility in water, ability to absorb and retain moisture, zeta potential, biocompatibility and antibacterial activity of modified samples were investigated and compared with pure chitosan. Then, the optimal sample of modified chitosan was combined with laponite at a ratio of 1:1, and the physicochemical, injectability, self-healing, rheological, and biocompatibility properties of this hydrogel were investigated.
Findings: The substitution percentage of QCS1, QCS3 and QCS6 samples was above 25%, 50% and 74%, respectively. QCS3 and QCS6 samples showed better water solubility at different pHs. By increasing the percentage of substitution, the surface charge became more positive and the antibacterial activity was improved. However, the higher percentage of cell viability in the QCS3 sample makes it more suitable for biological applications. After hydrogel formation, the ionic and hydrogen interactions between the QCS/LAP in the hydrogel was confirmed by FTIR. Elemental analysis confirmed the uniform distribution of laponite in the hydrogel. SEM images showed a reduction in pore size after incorporating Laponite in the hydrogel. Rheological studies showed a 5-fold increase in the mixed shear modulus after the addition of laponite. Also, the gelation time of the hydrogel was calculated about 5 minutes. The percentage of cell viability obtained by the MTT test after 72 hours was 93%. Consequently, the introduced hybrid hydrogel can be a suitable choice for tissue engineering and drug delivery applications.

کلیدواژه‌ها [English]

  • Injectable
  • Hydrogel
  • Quaternized Chitosan
  • Glycidyltrimethylammonium chloride (GTMAC)
  • Laponite
  1. de Lima E.L., Vasconcelos N.F., da Silva Maciel J., Andrade F.K.,Vieira R.S., and Feitosa J.PA., Injectable Hydrogel Based on Dialdehyde Galactomannan and N-succinyl Chitosan: A Suitable Platform for Cell Culture, J. Mater. Sci., Mater. Med., 31, 5, 2020.
  2. Ranjbardamghani F., Eslahi N., and Jahanmardi R., An Injectable Chitosan/Laponite Hydrogel Synthesized via Hybrid Cross-linking System: A Smart Platform for Cartilage Regeneration, Polym. Adv. Technol., 34, 2298-2311, 2023.
  3. Zhao D., Yu S., Sun B., Gao S., Guo S., and Zhao K., Biomedical Applications of Chitosan and Its Derivative Nanoparticles, Polymer, 10, 462, 2018.
  4. Hossein P., Barzegarzadeh M., and Sadegh F.A.M., Magnetic Graphene Quantum Dot/Chitosan Bionanocomposite Hydrogel Beads for Drug Delivery System: Synthesis and Application, Iran. J. Polym. Sci. Technol. (Persian), 36, 409-420, 2023.
  5. Andreica B.-I., Cheng X., and Marin L., Quaternary Ammonium Salts of Chitosan. A Critical Overview on the Synthesis and Properties Generated by Quaternization, Eur. Polym. J., 139, 110016, 2020.
  6. Kabirkoohian A., Bakhshi H., Irani S., and Sharifi F., Chemical Immobilization of Carboxymethyl Chitosan on Polycaprolactone Nanofibers as Osteochondral Scaffolds, Appl. Biochem. Biotechnol., 195, 3888-3899, 2023.
  7. Chien R.-C., Yen M.-T., and Mau J.-L., Antimicrobial and Antitumor Activities of Chitosan from Shiitake Stipes, Compared to Commercial Chitosan from Crab Shells, Carbohyd. Polym., 138, 259-264, 2016.
  8. Younes I., Sellimi S., Rinaudo M., Jellouli K., and Nasri M., Influence of Acetylation Degree and Molecular Weight of Homogeneous Chitosans on Antibacterial and Antifungal Activities, Int. J. Food Microbiol., 185, 57-63, 2014.
  9. Kong M., Chen X.G., Xing K., and Park H.J., Antimicrobial Properties of Chitosan and Mode of Action: A State of the Art Review, Int. J. Food Microbiol., 144, 51-63, 2010.
  10. Teotia A., Laurén I., Borandeh S., and Seppälä J., Quaternized Chitosan Derivatives as Viable Antiviral Agents: Structure–Activity Correlations and Mechanisms of Action, ACS Appl. Mater. Interfaces, 15, 18707-18719, 2023.
  11. Bugnicourt L. and Ladavière C., Interests of Chitosan Nanoparticles Ionically Cross-Linked with Tripolyphosphate for Biomedical Applications, Prog. Polym. Sci., 60, 1-17, 2016.
  12. Andreica B.-I., Anisiei A., Rosca I., Sandu A.-I., Pasca A.S., Tartau L.M., and Marin L., Quaternized Chitosan/Chitosan Nanofibrous Mats: An Approach Toward Bioactive Materials for Tissue Engineering and Regenerative Medicine, Carbohydr. Polym., 302, 120431, 2023.
  13. Feng P., Luo Y.,  Ke C.,  Qiu H., Wang W.,  Zhu Y.,  Hou R.,  Xu L., and Wu S., Chitosan-Based Functional Materials for Skin Wound Repair: Mechanisms and Applications, Front. Bioeng. Biotechnol., 9, 650598, 2021.
  14. Younes I. and Rinaudo M., Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications, Mar. Drugs, 13, 1133-1174, 2015.
  15. Cho J., Grant J., Piquette-Miller M., and Allen C., Synthesis and Physicochemical and Dynamic Mechanical Properties of a Water-Soluble Chitosan Derivative as a Biomaterial, Biol. Macromol., 7, 2845-2855, 2006.
  16. Yang F., Chen L., Zhao D.,  Guo T., Yu D., Zhang X., Li P., and Chen J., A Novel Water-Soluble Chitosan Grafted with Nerol: Synthesis, Characterization and Biological Activity, Int. J. Biol. Macromol., 232, 123498, 2023.
  17. Tao L., Zhonglong L., Ming X., Zezheng Y., Zhiyuan L., Xiaojun Z., and Jinwu W., In Vitro and In Vivo Studies of a Gelatin/Carboxymethyl Chitosan/LAPONITE® Composite Scaffold for Bone Tissue Engineering, RSC Adv., 7, 54100-54110, 2017.
  18. Sahariah P. and Másson M., Antimicrobial Chitosan and Chitosan Derivatives: A Review of the Structure-Activity Relationship, Biol. Macromol., 18, 3846-3868, 2017.
  19. Sajomsang W., Ruktanonchai U.R., Gonil P., Warin C., Quaternization of N-(3-Pyridylmethyl) Chitosan Derivatives: Effects of the Degree of Quaternization, Molecular Weight and Ratio of N-Methylpyridinium and N,N,N-Trimethyl Ammonium Moieties on Bactericidal Activity, Carbohydr. Polym., 82, 1143-1152, 2010.
  20. Senra T.D., Khoukh A., and Desbrieres J., Interactions between Quaternized Chitosan and Surfactant Studied by Diffusion NMR and Conductivity, Carbohydr. Polym., 156, 182-192, 2017.
  21. Shao K., Han B., Gao J., Song F., Yang Y., and Liu W., Synthesis and Characterization of a Hydroxyethyl Derivative of Chitosan and Evaluation of Its Biosafety, J. Ocean Univ. China, 14, 703-709, 2015.
  22. Zhou H., Qian J., Wang J., Yao W., Liu C., Chen J., and Cao X., Enhanced Bioactivity of Bone Morphogenetic Protein-2 with Low Dose of 2-N,6-O-Sulfated Chitosan In Vitro and In Vivo, Biomaterial, 30, 1715-1724, 2009.
  23. Islam N. and Ferro V., Recent Advances in Chitosan-Based Nanoparticulate Pulmonary Drug Delivery, Nanoscale, 8, 14341-14358, 2016.
  24. Kim E.H., Lim S., Kim T.E., Jeon I.O., and Choi Y.S., Preparation of In Situ Injectable Chitosan/Gelatin Hydrogel Using an Acid-Tolerant Tyrosinase, Biotechnol. Biopro. Eng., 23, 500-506, 2018.
  25. Yang B., Zhang Y., Zhang X. Tao L., Li S., and Wei Y., Facilely Prepared Inexpensive and Biocompatible Self-Healing Hydrogel: A New Injectable Cell Therapy Carrier, Polym. Chem., 3, 3235-3238, 2012.
  26. Li Z., Shim H., Cho M.O., Cho I.S., Lee J.H., Kang S.-W., Kwon B., and Huh K.M., Thermo-Sensitive Injectable Glycol Chitosan-Based Hydrogel for Treatment of Degenerative Disc Disease, Carbohydr. Polym., 184, 342-353, 2018.
  27. Zhao X., Li P., Guo B., and Ma P.X., Antibacterial and Conductive Injectable Hydrogels Based on Quaternized Chitosan-Graft-Polyaniline/Oxidized Dextran for Tissue Engineering, Acta Biomater., 26, 236-248, 2015.
  28. Zhao X., Wu H., Guo B., Dong R., Qiu Y., and Ma P.X., Antibacterial Anti-Oxidant Electroactive Injectable Hydrogel as Self-Healing Wound Dressing with Hemostasis and Adhesiveness for Cutaneous Wound Healing, Biomaterials, 122, 34-47, 2017.
  29. Heragh B.K., Javanshir S., Mahdavinia G.R., and Jamal M.R.N., Hydroxyapatite Grafted Chitosan/Laponite RD Hydrogel: Evaluation of the Encapsulation Capacity, pH-Responsivity, and Controlled Release Behavior, Int. J. Biol. Macromol., 190, 351-359, 2021.
  30. Gaharwar A.K., Schexnailder P.J., Kline B.P., and Schmidt G., Assessment of Using Laponite® Cross-Linked Poly(ethylene oxide) for Controlled Cell Adhesion and Mineralization, Acta Biomater., 7, 568-577, 2011.
  31. Zou X., Zhao X., and Ye L., Synthesis of Cationic Chitosan Hydrogel with Long Chain Alkyl and Its Controlled Glucose-Responsive Drug Delivery Behavior, RSC Adv., 5, 96230-96241, 2015.

32 .  Luan F., Wei L., Zhang J., Tan W., Chen Y., Dong F., Li Q., and Guo Z., Preparation and Characterization of Quaternized Chitosan Derivatives and Assessment of Their Antioxidant Activity, Molecules, 23, 516, 2018.

  1. Frascareli E., Silva V., Tonon R., and Hubinger M., Effect of Process Conditions on the Microencapsulation of Coffee Oil by Spray Drying, Food Bioprod. Process., 90, 413-424, 2012.
  2. Huang J., Cheng Z.-H., Xie H.-H., Gong J.-Y., Lou J., Ge Q., Wang Y.-J., Wu Y.-F., Liu S.-W., and Sun P.-L., Effect of Quaternization Degree on Physiochemical and Biological Activities of Chitosan from Squid Pens, Int. J. Biol. Macromol., 70, 545-550, 2014.
  3. Salas C., Thompson Z., and Bhattarai N., Electrospun Chitosan Fibers, In Electrospun Nanofibers, Elsevier, 371-398, 2017.
  4. Chiono V., Mozetic P., Boffito M., Sartori S., Gioffredi E., Silvestri A., Rainer A., Giannitelli S.M., Trombetta M., and Nurzynska D., Polyurethane-Based Scaffolds for Myocardial Tissue Engineering, Interface Focus, 4, 20130045, 2014.
  5. Sharifee F., Asadpour L., Shariati S., and Salehzadeh A., Evaluation of Antibacterial Effect of Aqueous, Hydro-Alcoholic and Alcoholic Extracts of Morus nigra on Gram-Positive and Gram-Negative Bacteria, J. Adv. Env. Health Res., 10, 225-234, 2022.
  6. Liu B., Li J., Lei X., Miao S., Zhang S., Cheng P., Song Y., Wu H., Gao Y., and Bi L., Cell-Loaded Injectable Gelatin/Alginate/LAPONITE®Nanocomposite Hydrogel Promotes Bone Healing in a Critical-Size Rat Calvarial Defect Model, RSC Adv., 10, 25652-25661, 2020.
  7. Golafshan N., Rezahasani R., Esfahani M.T., Kharaziha M., and Khorasani S., Nanohybrid Hydrogels of Laponite: PVA-Alginate as a Potential Wound Healing Material, Carbohydr. Polym., 176, 392-401, 2017.
  8. Kim S. and Lee J., Indentation and Temperature Response of Liquid Metal/Hydrogel Composites, J. Ind. Eng. Chem., 110, 225-233, 2022.
  9. Satani H., Kuwata M., Ishii H., Inoue T., and Shimizu A., Preparation of SEM Hydrogel Samples Using a High Pressure Water Freeze Fracture Method, High Press. Res., 41, 97-108, 2021.
  10. Willems N., Yang H.-Y., Langelaan M.L., Tellegen A.R., Grinwis G.C., Kranenburg H.-J.C., Riemers F.M., Plomp S.G., Craenmehr E.G., and Dhert W.J., Biocompatibility and Intradiscal Application of a Thermoreversible Celecoxib-Loaded Poly-N-Isopropylacrylamide MgFe-Layered Double Hydroxide Hydrogel in a Canine Model, Arthritis Res. Ther., 17, 1-16, 2015.
  11. Peng Z.-X., Wang L., Du L., Guo S.-R., Wang X.-Q., and Tang T.-T., Adjustment of the Antibacterial Activity and Biocompatibility of Hydroxypropyltrimethyl Ammonium Chloride Chitosan by Varying the Degree of Substitution of Quaternary Ammonium, Carbohydr. Polym, 81, 275-283, 2010.
  12. Wang F., Zhang Q., Huang K., Li J., Wang K., Zhang K., and Tang X., Preparation and Characterization of Carboxymethyl Cellulose Containing Quaternized Chitosan for Potential Drug Carrier, Int. J. Biol. Macromol., 154, 1392-1399, 2020.
  13. Ren Y., Zhao X.,  Liang X.,  Ma P.X., and Guo B., Injectable Hydrogel Based on Quaternized Chitosan, Gelatin and Dopamine as Localized Drug Delivery System to Treat Parkinson’s Disease, Int. J. Biol. Macromol., 105, 1079-1087, 2017.
  14. Liang H., Zhou B., He L., An Y., Lin L., Li Y., Liu S., Chen Y., and Li B., Fabrication of Zein/Quaternized Chitosan Nanoparticles for the Encapsulation and Protection of Curcumin, Rsc Adv., 5, 13891-13900, 2015.
  15. Freitas E.D., Moura Jr, C.F., Kerwald J., and Beppu M.M., An Overview of Current Knowledge on the Properties, Synthesis and Applications of Quaternary Chitosan Derivatives, Polymer, 12, 2878, 2020.
  16. Omer A.M., Tamer T.M., Khalifa R.E., Eltaweil A.S., Agwa M.M., Sabra S., Abd-Elmonem M.S., Mohy-Eldin M.S., and Ziora Z.M., Formulation and Antibacterial Activity Evaluation of Quaternized Aminochitosan Membrane for Wound Dressing Applications, Polymer, 13, 2428, 2021.
  17. Kurita K., Tomita K., Tada T., Ishii S., Nishimura S.I., and Shimoda K., Squid Chitin as a Potential Alternative Chitin Source: Deacetylation Behavior and Characteristic Properties, J. Polym. Sci., Part A: Polym. Chem, 31, 485-491, 1993.
  18. Mohsenifard S., Mashayekhan S., and Safari H., A Hybrid Cartilage Extracellular Matrix-Based Hydrogel/Poly(e-Caprolactone) Scaffold Incorporated with Kartogenin for Cartilage Tissue Engineering, J. Biomater. Appl., 37, 1243-1258, 2023.
  19. Wongwanakul R., Jianmongkol S., and Gonil P., Sajomsang W., Maniratanachote R., and Aueviriyavit S., Biocompatibility Study of Quaternized Chitosan on the Proliferation and Differentiation of Caco-2 Cells as an In Vitro Model of the Intestinal Barrier, J. Bioact. Compat. Pol., 32, 92-107, 2017.
  20. Zou Y., Sun Y., Shi W., Wan B., and Zhang H., Dual-Functional Shikonin-Loaded Quaternized Chitosan/Polycaprolactone Nanofibrous Film with pH-Sensing for Active and Intelligent Food Packaging, Food Chem., 399, 133962, 2023.
  21. Kiaee G., Dimitrakakis N., Sharifzadeh S., Kim H.J., Avery R.K., Moghaddam K.M., Haghniaz R., Yalcintas E.P., Barros N.R., and Karamikamkar S., Laponite-Based Nanomaterials for Drug Delivery, Adv. Healthc. Mater., 11, 2102054, 2022.
  22. Zhang L., He G., Yu Y., Zhang Y., Li X., and Wang S., Design of Biocompatible Chitosan/Polyaniline/Laponite Hydrogel with Photothermal Conversion Capability, Biomol., 12, 1089, 2022.