Study of Nonlinear Properties of Poly(m-phenylene diamine)@BaTiO3 Nanocomposite for Laser Application

Document Type : Research Paper

Authors

1 School of Chemistry, Damghan University, P.O. Box: 36716-41167, Damghan, Iran

2 School of Physics, Damghan University, P.O. Box: 36716-41167, Damghan, Iran

Abstract

Hypothesis: Poly(m-phenylenediamine) and barium titanate nanoparticles have promising physical and chemical properties in the electrical and optical fields. One of the attractive properties of these materials is their nonlinear optical behavior. This property allows these materials to be used in high-tech systems, the manufacture of various optical parts as well as lasers.
Methods: Poly(m-phenylenediamine/barium titanate) nanoparticles (PmPDA/BaTiO3) nanocomposite was prepared by in situ polymerizations. The prepared materials were characterized by various methods. Nonlinear optical studies of materials were investigated by the Z-scan technique with open aperture and closed aperture to obtain the absorption coefficient and nonlinear refractive index at different concentrations 0.3, 0.5, and 0.7 mg/L with four different intensities at a wavelength of 532 nm.
Findings: X-ray diffraction and field emission electron microscopy results showed a semi-crystalline pattern and an irregular aggregate structure for PmPDA/BaTiO3 nanocomposite, respectively. The thermal stability of the nanocomposite increased due to the presence of BaTiO3 nanoparticles relative to PmPDA. The presence of BaTiO3 nanoparticles in the nanocomposite shifted the absorption peak of PmPDA to a shorter wavelength (325 nm). The optical results show that at concentrations of 0.3, 0.5, and 0.7 mg/L with varying intensity of moderate light on PmPDA, BaTiO3, and PmPDA/BaTiO3 samples, the values of nonlinear refractive index (n2) and the nonlinear absorption coefficient (β) are obtained differently. In addition, the results show that by changing the intensity, the samples have a nonlinear refractive index with a negative sign (n2 <0). This result shows that the samples are self-focal in nature and can play an important role in the correction of laser pulses. The samples also have a saturation absorption (SA) nature. This feature plays an important role in the fabrication of optical switches and optical limiters in lasers.
 

Keywords


  1. Ghamsari B.G. and Berini P., Nonlinear Optics Rules Magnetism, Photonics, 10, 74-75, 2016.
  2. Chai Z., Hu X., Wang F., Niu X., Xie J., and Gong Q., Ultrafast All-Optical Switching, Optic. Mater., 5, 1600665, 2017.
  3. Stern B., Ji X., Okawachi Y., Gaeta A.L., and Lipson M., Battery-Operated Integrated Frequency Comb Generator, Nature, 562, 401-405, 2018.
  4. Keren-Zur S. and Ellenbogen T., A New Dimension for Nonlinear Photonic Crystals, Photonics, 12, 575-577, 2018.
  5. Smith S.D., Laser, Nonlinear Optics and Optical Computers, Nature, 316, 319-324, 1
  6. Udayabhaskar R., Ollakkan M., and Karthikeyan B., Preparation, Optical and Non-linear Optical Power Limiting Properties of Cu, CuNi Nanowires, Phys. Lett., 104, 013107, 2014.
  7. Sommer A., Bothschafter E.M., Sato S.A., Jakubeit C., Latka T., Razskazovskaya O., Fattahi H., Jobst M., Schweinberger W., Shirvanyan V., Yakovlev V.S., Kienberger R., Yabana K., Karpowicz N., Schultze M., and Krausz F., Attosecond Nonlinear Polarization and Light-Matter Energy Transfer in Solids, Nature, 534, 86-90, 2016.
  8. Hu W., Chen Y., Jiang H., Li J., Zou G., Zhang Q., Zhang D., Wang P., and Ming H., Optical Waveguide Based on a Polarized Polydiacetylene Microtube, Mater., 26, 3136-3141, 2014.
  9. Abed S., Bouchouit K., Aida M.S., Taboukhatd S., Sofiani Z., Kulyk B., and Figa V., Nonlinear Optical Properties of Zinc Oxide Doped Bismuth Thin Films Using Z-scan Technique, Mater., 56, 40-44, 2016.
  10. Marder S.R., Kippelen B., Jen A.K.Y., and Peyghambarian N., Design and Synthesis of Chromophores and Polymers for Electro-Optic and Photorefractive Applications, Nature, 388, 845-851, 1997.
  11. Tsutsumi N., Molecular Design of Photorefractive Polymers, J., 48, 571-588, 2016.
  12. Awuzie C.I., Conducting Polymers, Mater Today, 4, 5721-5726, 2017.
  13. Moghadam P.N., Nazarzadeh Zare E., Amiri H., and Lakouraj M.M., Preparation of Conductive Nanocomposites Based on Poly(aniline-co-butyl 3-aminobenzoate) and Poly(aniline-co-ethyl 3-aminobenzoate) by Solution Blending Method, Interfaces, 19, 475-488, 2012.
  14. Nazarzadeh Zare E., Lakouraj M.M., and Ramezani A., Effective Adsorption of Heavy Metal Cations by Superparamagnetic Poly(aniline-co-m-phenylenediamine)@Fe3O4 Nanocomposite, Polym. Technol., 34, 21501 (1 of 11), 2015.
  15. Ulbricht M., Advanced Functional Polymer Membranes, Polymer, 47, 2217-2262, 2006.
  16. Baro M. and Ramaprabhu S., Conductive and Nitrogen-Enriched Porous Carbon Nanostructure Derived from Poly(para-phenylenediamine) for Energy Conversion and Storage Applications, Surface Sci., 503, 144069, 2020.
  17. Baruah S., Devi N., and Puzari A., Synthesis and Characterization
    of Poly(p-phenylenediamine)/TiO2 Nanocomposites and Investigation of Conducting Properties for Optoelectronic Application, Sci. Poland, 38, 296-304, 2020.
  18. Dadkhah S., Rajabi Y., and Nazarzadeh Zare E., Thermal Lensing Effect in Laser Nanofuids Based on Poly(aniline-co-ortho phenylenediamine)@TiO2 Interaction, Electron. Mater., 50, 4896-4907, 2021.
  19. Takahashi H., Numamoto Y., Tani J., and Tsurekawa S., Piezoelectric Properties of BaTiO3 Ceramics with High Performance Fabricated by Microwave Sintering, J. Appl. Phys., 45, 7405, 2006.
  20. Karvounis A., Timpu F., Vogler-Neuling V.V., Savo R., and Grange R., Barium Titanate Nanostructures and Thin Films for Photonics, Optic. Mater., 8, 2001249, 2020.
  21. Rosa A., Tulli D., Castera P., Gutierrez A.M., Griol A., Baquero M., Vilquin B., Eltes F.,  Abel S., Fompeyrine J., and Sanchis P., Barium Titanate (BaTiO3) RF Characterization for Application in Electro-Optic Modulators, Mater. Express, 7, 4328-4336, 2017.
  22. Dhole S.G., Dake S.A., Prajapati T.A., and Helambe S.N., Effect of ZnO Filler on Structural and Optical Properties of Polyaniline-ZnO Nanocomposites, Procedia Manufacturing, 20, 127-134, 2018.
  23. Khairy M. and Gouda M.E., Electrical and Optical Properties of Nickel Ferrite/Polyaniline Nanocomposite, Adv. Res., 6, 555-562, 2015.
  24. Zhang Y., Wang Y., Qi S., Dunn S., Dong H., and Button T., Enhanced Discharge Energy Density of rGO/PVDF Nanocomposites: The Role of the Heterointerface, Phys. Lett., 112, 202904, 2018.
  25. Nowrouzi Gheymasi A., Rajabi Y., and Nazarzadeh Zare E., Nonlinear Optical Properties of Poly(aniline-co-pyrrole)@ ZnO-Based Nanofluid, Mater., 102, 109835, 2020.
  26. Safa M., Rajabi Y., and Ardyanian M., Influence of Preparation Method on the Structural, Linear, and Nonlinear Optical Properties of TiN Nanoparticles,  Mater. Sci.: Mater. Electron., 32, 19455-19477, 2021. 
  27. Saleh T.A., Sarı A., and Tuzen M., Carbon Nanotubes Grafted with Poly(trimesoyl, m-phenylenediamine) for Enhanced Removal of Phenol,   Environ. Manage.252, 109660, 2019.
  28. Bhuiyan M.R.A., Alam M.M., Momin M.A., Uddin M.J., and Islam M., Synthesis and Characterization of Barium Titanate (BaTiO3) Nanoparticle, J. Mechan. Mater. Eng., 1, 21-24, 2012.‏
  29. Xiong T., Yuan X., Wang H., Jiang L., Wu Z., Wang H., and Cao X., Integrating the (311) Facet of MnO2 and the Fuctional Groups of Poly(m phenylenediamine) in Core–Shell MnO2@Poly(m-phenylenediamine) Adsorbent to Remove Pb Ions from Water,  Hazard. Mater., 389, 122154, 2020.
  30. Tian J., Luo Y., Li H., Lu W., Chang G., Qin X., and Sun X. Ag@Poly(m-phenylenediamine)-Ag Core–Shell Nanoparticles: One-Step Preparation, Characterization, and Their Application for H2O2 Detection, Sci. Technol., 1, 1393-1398, 2011.
  31. Xu L., Ma J., Zhou N., Guo P., Wang G., and Su C., Well-Dispersed Poly(m-phenylenediamine)/Silver Composite for Non-enzymatic Amperometric Glucose Sensor Applied in a Special Alkaline Environment, Ionics, 24, 2795-2805, 2018.
  32. Zuo M., Yuan X., Wang S., Zhu W.W., Zuo X., and Geng F., Solventless Preparation of Ammonium Persulfate Microcapsules with a Polypyrrole Shell, Mater. Sci., 54, 5898-5906, 2019.
  33. Cui B., Yu P., and Wang X. Preparation and Characterization of BaTiO3 Powders and Ceramics by Sol–Gel Process Using Decanedioic Acid, Alloys Compd., 459, 589-593, 2008.
  34. Jang J.I., Mani S., Ketterson J.B., Lovera P., and Redmond G., Nonlinear Refractive Index and Three-Photon Absorption Coefcient of Poly(9,9-dioctylfuorence), Phys. Lett., 95, 221906, 2009.
  35. Shabeeb G.M., Emshary C.A., Hassan Q.M.A., and Sultan H.A., Investigating the Nonlinear Optical Properties of Poly Eosin-Y Phthalate Solution under Irradiation with Low Power Visible CW Laser Light, B: Condens Matter, 4526, 19, 2019.
  36. Mao Sh., Xu Y., Niu J., Wang X., and Wang M., Nonlinear Optical Properties of Poly(3,4-ethylenedioxythiophene) Synthesized by Electropolymerization, J. Appl. Phys., 48, 1-3, 2009.
  37. Bahrami A., Talib Z.A., Shahriari E., Yunus W.M.M., Kasim A., and Behzad K., Optical Nonlinearity, Electrical Property, Characterization of Electro Synthesized Conjugated Polymer-Carbon Nanotube Composite, J. Molecul. Sci., 13, 918-928, 2012.
  38. Sezer A., Gurudas U., Collins B., Mckinlay A., and Bubb D.M., Nonlinear Optical Properties of Conducting Polyaniline and Polyaniline-Ag Composite Thin Films, Phys. Lett., 47, 164-168, 2009.