The Effect of Graphite Nanoparticles on Thermal Stability and Ablation of Phenolic/Carbon Fiber/Graphite Nanocomposites

Document Type : Research Paper

Authors

Polymer Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box: 14115-114, Tehran, Iran

Abstract

Phenolic resin composites reinforced with short carbon fiber are one of the most usable materials in ultra-high-temperature applications such as thermal protective in aerospace industries. In this work, novolac type of phenolic resin matrix was modified with graphite nanoparticles to prepare multi-layered nanocomposites. The effect of graphite nanoparticles was studied on the thermal stability, ablation and mechanical properties of novolac/short carbon fiber composites to achieve nanocomposite with optimum properties for ultra-high-temperature applications. In order to evaluate thermal stability and ablation properties of composite and nanocomposites, a sample containing 40 wt% short carbon fiber was prepared as a reference and the structure of its polymeric matrix was modified with nanographite particles. The amounts of nanographite powders in nanocomposite samples were chosen as 6, 9 and 12 wt%. XRD Spectroscopy was used to study and investigate the dispersion of the graphite nanoparticles and morphology in the polymeric matrix. The compression molding under hot press method was used to fabricate the composite and nanocomposite specimens. Thermal properties of the nanocomposites were studied by TGA and oxy-acetylene flame test. Three-point bending and wear tests were performed to measure the mechanical and wear properties of the nanocomposites. The obtained results showed that the addition of nanographite improved the thermal stability, decreased the rate of degradation and at the same time decreased the weight loss and ablation rate of the nanocomposites. Addition of 12 wt% nanographite particles increased thermal stability by about 12% compared to the reference sample. Moreover in nanocomposite with 12 wt% graphite, the rate of ablation decreased by more than 19% compared to the reference composite.

Keywords