Electrospinning of Nano-Porous Cellulose Acetate Fibers Under Humidified Condition

Document Type : Research Paper

Authors

Department of Textile Engineering, Amirkabir University of Technology, P.O. Box: 15875-4413, Tehran, Iran

Abstract

Electrospinning as a simple method was used to produce cellulose acetate porous fibers. Motivation for production of fibers with small diameter in the submicron and nano scales was to achieve the material with a large surface
area with porosity formation in the structure of electrospun fibers. In this study, porous cellulose acetate (CA) fibers were produced by electrospinning process from solution of CA/acetone/water. The porosity of the fiber was controlled by adjustment of the temperature and humidity of electrospinning chamber. Scanning electron microscopy (SEM) and densitometry were employed to evaluate the morphology and porosity of the samples. The results showed that the morphology and porosity of cellulose acetate fibers depend on the polymer solution concentration and relative humidity of electrospinning atmosphere. Cellulose acetate fibers were electrospun best at the concentrations of 12 to 18 wt% and relative humidity range of 40 to 80%. The highest porosity was obtained at the relative humidity of 80% and concentration of 15 wt%. In addition, by increasing the relative humidity of electrospinning environment and polymer concentration, the average diameter of the fibers was increased. With increasing the polymer concentration, there was less likelihood in thermodynamic instability and phase separation. In contrast, increases in relative humidity led to diffusion of more water into the electrospinning jet, giving rise to phase separation. Our observations revealed that the skin of fibers was formed at the earlier stage of the process and prevented the stretch in electrospinning jet.

Keywords