Biodegradability Study of the Blend Film of High Density Polyethylene and Poly(lactic acid) Disposable Packages Flake

Document Type : Research Paper

Authors

1 Polymer Engineering Department, Faculty of Engineering, University of Yazd, P.O. Box: 89195-741, Yazd, Iran

2 Textile Engineering Department; Faculty of Engineering, University of Yazd, P.O. Box: 89195-741, Yazd, Iran

Abstract

One of the major concerns of using a non-biodegradable polymer product is its disposal at the end of its life cycle. Development of biodegradable plastics promises an alternative solution to combat this problem. Blending of poly(lactic acid) with non-biodegradable polymers is a practical and economical method for modifying the biodegradability properties of non-biodegradable polymers. In this study, soil biodegradability of the blends of high density polyethylene (HDPE) and variable amounts of recycled poly(lactic acid) (r-PLA) plastic flakes at 0, 5, 10, 20, 30, 40 and 50 wt% was studied. The behavior of the force-elongation profile of the blends having r-PLA content of lower than 30 wt% was approximately the same as that of pure HDPE while, it was completely different for the other blends. Tearing force and elongation-at-yield-point of the blends films with the 20 to 50 wt% r-PLA were decreased significantly after 60 days of soil biodegradability test. Morphological study showed that biodegradability of the blend films at surface of the samples (deep pores and grooves) was increased with extended biodegradability time and higher r-PLA content, while, this variation was significant for the blend films of more than 20 wt% r-PLA content. Thermal properties evaluation by differential scanning calorimetry (DSC) curves indicated that the glass transition temperature and enthalpy peaks during the heating stage were eliminated with increasing the biodegradability testing time. Also, reduction in the crystallinity degree of the r-PLA component with increasing the biodegradability testing time coincided with the earlier results.

Keywords