Effect of Hyperbranched Polymers on Curing Behavior of UV Curable Inks in Inkjet Printing

Document Type : Research Paper

Authors

1 Department of Printing Science and Technology, Institute for Color Science and Technology, P.O. Box: 654-16765 , Tehran, Iran

2 Department of Nano Technology, Institute for Color Science and Technology, P.O. Box: 654-16765, Tehran, Iran

Abstract

A high quality and high resolution printing can be rapidly created by inkjet printing technology. Inkjet printing is one of the most economic printing methods and ink waste in this technique is very low. Inkjet process provides printing on any type of substrates. The UV curable inks are special types of printing inks that have been widely used in the last decades. The use of UV curable inks is more attractive in inkjet printing technology in comparison to other methods of printing. The most important advantage of UV curable inks in this method is that they are VOC-free and compatible and have good adhesion on many types of substrates. In this research, the effect of hyperbranched polymers on the curing behavior of UV curable inks was investigated. Two types of hyperbranched polymers with hydroxyl and fatty acid chain terminal groups were used in ink formulations. The effect of hyperbranched polymers on the curing behavior of UV curable ink was investigated by real-time FTIR analysis. The results showed that the hyperbranched polymers could improve curing process by increasing the conversion rate of the third curing stage. All ink formulations containing hyperbranched polymers showed higher conversion than a neat sample. The highest conversion was 77 % for the blend containing a hyperbranched polymer with hydroxyl end groups while the neat sample showed a final conversion of 55%. UV curable inks in inkjet process containing hyperbranched polymers with hydroxyl end groups showed a higher final conversion than neat sample.

Keywords