Document Type : Research Paper
Authors
1
Department of Chemistry, Yazd Branch, Islamic Azad University, P.O. Box 8214810, Yazd, Iran
2
School of Chemical and Petroleum Engineering, Shiraz University, Postal Code 71348-51154, Shiraz, Iran
Abstract
Hypothesis: In recent years, with the shortage of conventional energy resources, there has been a great advancement in the study of fuel cells particularly hydrogen-methanol types as an important energy alternative. One of the main components in such fuel cells is an electrolyte membrane whose main function is to carry protons and capture methanol. The electrolyte membrane must have a high chemical and electrochemical stability plus mechanical resistance. In addition, high proton conductivity is required to support better fuel cell performance.
Methods: In this research, novel nanocomposite membranes were prepared as electrolyte for application in fuel cells. For this purpose, two types of membranes, including sulfonated polyethersulfone (SPES) and its blend with polyurethane (PU), were chosen as base membranes. At first, polyethersulfone was sulfonated by using sulfonic acid and blended with PU. Then, silica nanoparticles with different percentages (3, 5, and 8 wt%) were added to blend membrane (SPES/PU/SiO2). The prepared membranes properties were studied by Fourier transform spectroscopy (FT-IR), X-ray diffraction analysis, thermogravimetry (TGA), water and methanol uptake test, proton conductivity test and scanning electron microscopy (SEM).
Findings: The results suggested that there was a proper distribution of PU into the prepared membrane through forming hydrogen bonds between polar groups of SEPS and PU. Hence, by the mechanism of increasing polarity, the conductivity in SPES/PU blend membrane was increased (74%), comparing to its pure samples without intense increase in water and ethanol uptake. Additionally, by adding the silica nanoparticles to a SEPS/PU blend membrane and forming SPES/PU/SiO2 nanocomposite membrane, these particles formed a higher adhesion between the phases by forming covalent bonds with sulfonic acid groups of SPES and forming hydrogen bond with polar groups of PU and SPES. As a result, the morphology was modified by the mechanism of decreasing cavities and voidages. Finally, the conductivity of SPEC/PU/SiO2 nanocomposite membrane compared to that of the SPES pure sample increased by 53.13% only by an increase of 11% and 8% in water and methanol uptake, respectively.
Keywords