Dextran/Bioactive Glass Nanocomposite Hydrogels: Effect of Dextran Molecular Weight and Content on Swelling Behavior and Structural Characteris‌tics

Document Type : Research Paper

Authors

Department of Chemical Engineering, Faculty of Engineering and Technology, University of Mazandaran, P.O. Box 416, Mazandaran, Iran

Abstract

Hypothesis: Design and fabrication of hydrogel scaffolds with the required characteris‌t‌ics are the major issues of their development in tissue engineering. A wide variety of physicochemical, mechanical, and morphological properties of hydrogel scaffolds has provided new opportunities to overcome various challenges in tissue engineering.
Methods: A series of nanocomposite hydrogels comprised of dextran (Dex) and sol-gel derived bioactive glass (BG) nanoparticles were prepared as scaffolds for bone tissue engineering. The swelling behaviour and mechanical s‌t‌rength of the obtained hydrogel scaffolds by different contents and chain molecular weights of dextran were evaluated.
Findings: Fourier transforms infrared spectroscopy s‌t‌udy provides information on intermolecular interaction between the dextran chain and the bioactive glass nanoparticles through influence on hydrogen bond s‌t‌rength. The influence of the given parameters on the morphology of scaffolds was probed using field emission scanning electron microscopy (FE-SEM). The results of FE-SEM showed that Dex/BG scaffolds consis‌t‌ed of a porous 3D micros‌t‌ructure with a pore size range of 102-156 μm. The effects of hydrogen bonding and chain entanglements showed significant differences in pore morphologies of the prepared hydrogels. According to the obtained apparent density and equilibrium swelling, the increase in the dextran content showed that the change in the gel porosity results in reduced free water of the network. Meanwhile, the amount of equilibrium swelling dropped while the compressive modulus increased due to the effective interaction between the dextran chains and bioactive glass nanoparticles. Furthermore, the results obtained by thermogravimetric analysis indicated an increase in thermal s‌t‌ability of dextran nanocomposites hydrogel, which could be due to the effective interaction between dextran chains and bioactive glass nanoparticles.

Keywords


  1. Moradian A., Zandi M., Behzadnasab M., and Pezeshki M.M., Synthesis Methods of In Situ Forming Injectable Hydrogels and Their Applications in Tissue Engineering: A Review, Iran. J. Polym. Sci. Technol. (Persian), 2, 95-113, 2020.
  2. Mohammadi Y., Mirzadeh H., Moztarzadeh F., Soleymani M., and Jabari E., Design and Fabrication of Biodegradable Porous Chitosan/Gelatin/Tricalcium Phosphate Hybrid Scaffolds for Tissue Engineering, Iran. J. Polym. Sci. Technol. (Persian), 3, 297-308, 2007.
  3. Daraei N.Z. and ShabaniI., Conductive Nanofibrous Scaffolds for Tissue Engineering Applications: A Review, Iran. J. Polym. Sci. Technol. (Persian), 3, 189-210, 2019.
  4. Pacelli S., Paolicelli P., and Casadei M.A., New Biodegradable Dextran-Based Hydrogels for Protein Delivery: Synthesis and Characterization, Carbohydr. Polym., 126, 208-214, 2015.
  5. Liu J., Qi Ch., Tao K., Zhang J., Xu L., Jiang X., Zhang Y., Huang L., Li Q., Xie H., Gao J., Shuai X., Wang G., Wang Zh., and Wang L., Sericin/Dextran Injectable Hydrogel as an Optically Trackable Drug Delivery System for Malignant Melanoma Treatment, ACS Appl. Mater. Interfaces, 8, 6411-6422, 2016.
  6. Matricardi P., Pontoriero M., Coviello T., Casadei M.A., and Alhaique F., In Situ Cross-Linkable Novel Alginate-Dextran Methacrylate IPN Hydrogels for Biomedical Applications: Mechanical Characterization and Drug Delivery Properties, Biomacromolecules, 9, 2014-2020, 2008.
  7. Melchels F.P.W., Feijen J., and Grijpma D.W., A Review on Stereolithography and Its Applications in Biomedical Engineering, Biomaterials, 31, 6121-6130, 2010.
  8. Liao N., Unnithan A.F., Joshi M.K., Tiwari A.P., Hong S.T., Park Ch., and Kim Ch.S., Electrospun Bioactive Poly(ɛ-caprolactone)–Cellulose Acetate–Dextran Antibacterial Composite Mats for Wound Dressing Applications, Colloids Surf. A: Physicochem. Eng. Asp., 469, 194-201, 2015.
  9. Hwang M.R., Kim J.O., Lee J.H., Kim Y.I., Kim J.H., Chang S.W., Jin S.G., Kim J.A., Lyoo W.S., Han S.S., Ku S.K., Yong Ch.S., and Choi H.G, Gentamicin-Loaded Wound Dressing with Polyvinyl Alcohol/Dextran Hydrogel: Gel Characterization and In Vivo Healing Evaluation, AAPS PharmSciTech, 11, 1092-1103, 2010.
  10. Nikpour P., Salimi-Kenari H., Fahimipour F., Rabiee S.M., Imani M., Dashtimoghadam E., and Tayebi L., Dextran Hydrogels Incorporated with Bioactive Glass-Ceramic: Nanocomposite Scaffolds for Bone Tissue Engineering,Carbohydr. Polym., 190, 281-294, 2018.
  11. Li T., Ding X., Tian L., and Ramakrishna S., Engineering BSA-Dextran Particles Encapsulated Bead-On-String Nanofiber Scaffold for Tissue Engineering Applications, J. Mater. Sci., 52, 10661-10672, 2017.
  12. Fang J., Li P., Lu X., Fang Li., Lu X., and Ren F., A Strong, Tough, and Osteoconductive Hydroxyapatite Mineralized Polyacrylamide/Dextran Hydrogel for Bone Tissue Regeneration, Acta Biomater., 88, 503-513, 2019.
  13. Lévesque S.G., Lim R.M., and Shoichet M.S., Macroporous Interconnected Dextran Scaffolds of Controlled Porosity for Tissue-Engineering Applications, Biomaterials, 26, 7436-7446, 2005.
  14. Szafulera K., Wach R.A.,  Olejnik A.K., Rosiak J.M., Ulański P., Radiation Synthesis of Biocompatible Hydrogels of Dextran Methacrylate, Radiat. Phys. Chem.,142, 115-120, 2018.
  15. Boccaccini A.R. and Blaker J.J., Bioactive Composite Materials for Tissue Engineering Scaffolds, Expert Rev. Med. Devices, 2, 303-317, 2005.
  16. Swain S.K., Bhattacharyya S., and Sarkar D., Fabrication of Porous Hydroxyapatite Scaffold via Polyethylene Glycol-Polyvinyl Alcohol Hydrogel State, Mater. Res. Bull., 64, 257-261, 2015.
  17. Dessì M., Borzacchiello A., Mohamed T.H.A., Abdel-Fattah W.I., and Ambrosio L., Novel Biomimetic Thermosensitive Β-Tricalcium Phosphate/Chitosan-Based Hydrogels for Bone Tissue Engineering, J. Biomed. Mater. Res. A, 101, 2984-2993, 2013.
  18. Cai K., Zhang J., Deng L., Yang L., Hu Y., Chen C., Xue L., and Wang L., Physical and Biological Properties of a Novel Hydrogel Composite Based on Oxidized Alginate, Gelatin and Tricalcium Phosphate for Bone Tissue Engineering, Adv. Eng. Mater., 9, 1082-1088, 2007.
  19. Yu P., Bao R.-Y., Shi X.-J., Yang W., and Yang M.-B., Self-Assembled High-Strength Hydroxyapatite/Graphene Oxide/Chitosan Composite Hydrogel for Bone Tissue Engineering, Carbohydr. Polym., 155, 507-515, 2017.
  20. Sarker B., Li W., Zheng K., Detsch R., and Boccaccini A.R., Designing Porous Bone Tissue Engineering Scaffolds with Enhanced Mechanical Properties from Composite Hydrogels Composed of Modified Alginate, Gelatin, and Bioactive Glass, ACS Biomater. Sci. Eng, 2, 2240-2254, 2016.
  21. Moreira C.D., Carvalho S.M., Sousa R.G., Mansur H.S., and Pereira M.M., Nanostructured Chitosan/Gelatin/Bioactive Glass In Situ Forming Hydrogel Composites as a Potential Injectable Matrix for Bone Tissue Engineering, Mater. Chem. Phys., 218, 304-316, 2018.
  22. Kim M.H., Kim B.S., Lee J., Cho D., Kwon, O.H., and Park W.H., Silk Fibroin/Hydroxyapatite Composite Hydrogel Induced by Gamma-Ray Irradiation for Bone Tissue Engineering, Biomater. Res., 21, 1-9, 2017.
  23. Kim H.H., Song D.W., Kim M.J., Ryu S.J., Um I.C., Ki C.S., and Park Y.H., Effect of Silk Fibroin Molecular Weight on Physical Property of Silk Hydrogel, Polymer, 90, 26-33, 2016.
  24. Baghban S.M., EhsaniS.D., Otadi M., and Abedi L.M., Superabsorbent Sulfonated Polyacrylamide/Aluminum Nitrate Hydrogel: Swelling, Mechanical, Thermal and Structural Properties, Iran. J. Polym. Sci. Technol. (Persian), 5, 419-433, 2018.
  25. Hovgaard L. and Brøndsted H., Dextran Hydrogels for Colon-Specific Drug Delivery, J Control Release, 36, 159-166, 1995.
  26. Mami M., Lucas-Girot A., Oudadesse H., Dorbez-Sridi R., Mezahi F., and Dietrich E., Investigation of the Surface Reactivity of a Sol–Gel Derived Glass in the Ternary System SiO2–CaO–P2O5, Appl. Surf. Sci., 254, 7386-7393, 2008.
  27. Mansur H.S. and Costa H.S., Nanostructured Poly(vinyl alcohol)/Bioactive Glass and Poly(vinyl alcohol)/Chitosan/Bioactive Glass Hybrid Scaffolds for Biomedical Applications, Chem. Eng. J., 137, 72-83, 2008.
  28. Mozafari M., Rabiee M., Azami M., and Maleknia S., Biomimetic Formation of Apatite on the Surface of Porous Gelatin/Bioactive Glass Nanocomposite Scaffolds, Appl. Surf. Sci., 257, 1740-1749, 2010.
  29. Mačković M., Hoppe A., Detsch R., Mohn D., Stark W.J., Spiecker E., and Boccaccini A.R., Bioactive Glass (type 45S5) Nanoparticles: In Vitro Reactivity on Nanoscale and Biocompatibility, J. Nanopart. Res., 14, 966, 2012.
  30. Ghaffari R., Salimi-Kenari H., Fahimipour F., Rabiee S.M., Adeli H., and Dashtimoghadam, E., Fabrication and Characterization of Dextran/Nanocrystalline β-Tricalcium Phosphate Nanocomposite Hydrogel Scaffolds, Int. J. Biol. Macromol., 148, 434-448, 2020.
  31. Bonelli N., Poggi G., Chelazzi D., Giorgi R., and Baglioni P., Poly(vinyl alcohol)/Poly(vinyl pyrrolidone) Hydrogels for the Cleaning of Art, J. Colloid. Interface Sci., 536, 339-348, 2019.
  32. Park C.J., Ryoo J., Ki Ch.S., Kim J.W., Kim I.S., Bae D.G., and Um I.Ch., Effect of Molecular Weight on the Structure and Mechanical Properties of Silk Sericin Gel, Film, and Sponge, Int. J. Biol. Macromol., 119, 821-832, 2018.
  33. Nangia A. and Hung C.T., Analysis of Preparation of Dextran Hydrogel Membranes as a Wound Dressing, Drug Dev. Ind. Pharm., 17, 1609-1624, 1991.
  34. Haraguchi K. and Matsuda K., Spontaneous Formation of Characteristic Layered Morphologies in Porous Nanocomposites Prepared from Nanocomposite Hydrogels, Chem. Mater., 17, 931-934, 2005.
  35. Arabi N. and Zamanian A., Effect of Cooling Rate and Gelatin Concentration on the Microstructural and Mechanical Properties of Ice Template Gelatin Scaffolds, Biotechnol. Appl. Biochem., 60, 573-579, 2013.
  36. Mahdavinia G.R., Soleymani M., Sabzi M., Azimi H., and Atlasi Z., Novel Magnetic Polyvinyl Alcohol/Laponite RD Nanocomposite Hydrogels for Efficient Removal of Methylene Blue, J. Environ. Chem. Eng., 5, 2617-2630, 2017.
  37. Dorkoosh F.A., Brussee J., Verhoef J.C., Borchard G., Rafiee T.M., and Junginger H.E.,Preparation and NMR Characterization of Superporous Hydrogels (SPH) and SPH Composites, Polymer, 41, 8213-8220, 2000.
  38. Mecwan M.M., Rapalo G.E., Mishra S.R., Haggard W.O., and Bumgardner J.D., Effect of Molecular Weight of Chitosan Degraded by Microwave Irradiation on Lyophilized Scaffold for Bone Tissue Engineering Applications, J. Biomed. Mater. Res. A, 97, 66-73, 2011.
  39. Dandu R., Cresce A.V., Briber R., Dowell P., Cappello J., and Ghandehari H., Silk–Elastinlike Protein Polymer Hydrogels: Influence of Monomer Sequence on Physicochemical Properties, Polymer, 50, 366-374, 2009.
  40. Anumolu S.S., Anumolu S., Menjoge A., Deshmukh M., Gerecke D., Stein S., Laskin J., and Sinko P.J., Doxycycline Hydrogels with Reversible Disulfide Crosslinks for Dermal Wound Healing of Mustard Injuries, Biomaterials, 32, 1204-1217, 2011.
  41. Zhang Y. and Chu C.C., The Effect of Molecular Weight of Biodegradable Hydrogel Components on Indomethacin Release from Dextran and Poly(DL) lactic Acid Based Hydrogels, J. Bioact. Compat. Polym., 17, 65-85, 2002.
  42. Ari B., Yetiskin B., Okay O., and Sahiner N., Preparation of Dextran Cryogels for Separation Processes of Binary Dye and Pesticide Mixtures from Aqueous Solutions, Polym. Eng. Sci., 60, 1890-1901, 2020. 
  43. Zhao Y., Cui Zh., Liu B., Xiang J., Qiu D., Tian Y., Qu X., and Yang Zh., An Injectable Strong Hydrogel for Bone Reconstruction, Adv. Healthc. Mater., 8, 190-204, 2019.
  44. Ghanavati S. and Izadi V.H., Effect of Graphene Oxide Nanoparticles on the Physical and Mechanical Properties of Chitosan/Gelatin/Polyvinyl Alcohol Films, Iran. J. Polym. Sci. Technol. (Persian), 1, 75-87, 2020.
  45. Hong P.D. and Chen J.H., Network Structure and Chain Mobility of Freeze-Dried Polyvinyl Chloride/Dioxane Gels, Polymer, 39, 5809-5817, 1998.
  46. Bajpai S., Chand N., Tiwari S., and Soni Sh., Swelling Behavior of Cross-Linked Dextran Hydrogels and Preliminary Gliclazide Release Behavior, Int. J. Biol. Macromol., 93, 978-987, 2016.
  1. Strbak O., Antal I., Khmara I., Koneracká M., íková K.M., Závisová V., Mom M., Juríková A., Hnilicová P., Gombos J., Kadasova N., and Dobrota D., Influence of Dextran Molecular Weight on the Physical Properties of Magnetic Nanoparticles for Hyperthermia and MRI Applications, Nanomaterials, 12, 821-832, 2020.