Evaluation of the Impact Resistance of POM/TPU/CB Three-Phase Nanocomposite for Application in Bumper Bracket

Document Type : Research Paper

Authors

1 Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran.

2 Department of Materials and Metallurgy Engineering, Technical and Vocational University (TVU), Tehran, Iran

Abstract

Hypothesis: The effect of carbon black nanoparticles and thermoplastic polyurethane on the tensile strength and impact properties of polyacetal (POM), which is widely used in the application of automotive parts such as bumper brackets, has been investigated. Improving the impact resistance of polyacetal is one of the challenges of automotive industry, which would diminish the car damage in accidents. The incorporation of thermoplastic polyurethane into the polyacetal matrix can create good compatibility and increase its impact resistance. In addition, the presence of carbon block in the polyacetal matrix can simultaneously elevate the tensile strength and impact resistance and increase the UV resistance of polyacetal.
Methods: Standard mechanical testing specimens of the POM/CB/TPU nanocomposites, containing 0.42% (by wt) carbon black and different fractions of 2.5, 5 and 7.5 % (by wt) of thermoplastic polyurethane (TPU) were produced through a twin-screw extruder and injection molding. Standard tensile and impact tests were performed to evaluate the mechanical performance of nanocomposites. The morphology of fractured surfaces of impact specimens and the toughening mechanisms were investigated using scanning electron microscopy (SEM). 
Findings: The results of tensile test showed that the presence of carbon black nanoparticles increases the Young's modulus and the tensile strength of polyacetal. However, the inclusion of thermoplastic polyurethane into the POM/CB reduced the tensile behavior. The incorporation of a phase with soft segments to the polymeric matrix with hard segments reduces the tensile strength. In addition, the carbon black and the thermoplastic polyurethane increase the elongation-at-break of this three-phase nanocomposite. The results of impact test showed that the presence of carbon black nanoparticles and thermoplastic polyurethane in the polyacetal matrix leads to enhanced impact resistance. Plastic deformation, crazing, fibrillated structure and microvoid were the dominant toughening mechanisms in nanocomposites.

Keywords


  1. Hashemi S., Elmes P., and Sandford S., Hybrid Effects on Mechanical Properties of Polyoxymethylene, Eng. Sci., 37, 45-58, 1997.
  2. Churchward G. and Kosior E., Know Your Plastics, PIA, Melbourne, 1992.
  3. Soltanzadeh Firooz Salari M., Shelesh-Nezhad K., and Mohsenzadeh R., Experimental Studies on Mechanical Properties and Thermal Behavior of Polyoxymethylene/CaCO3 Nanocomposites, Iran J. Polym. Sci. Technol. (Persian), 27, 62-51, 2014.
  4. Mohsenzadeh R., Majidi H., Soltanzadeh M., and Shelesh-Nezhad K., Wear and Failure of Polyoxymethylene/Calcium Carbonate Nanocomposite Gears, Inst. Mech. Eng. J: J. Eng. Tribol., 234, 811-820, 2019.
  5. Mohsenzadeh R. and Shelesh-Nezhad K., Experimental Studies on the Durability of PA6-PP-CaCO3 Nanocomposite Gears, Polym. Sci. Compos., 3, 147-156, 2016.
  6. Sahebian S., Zebarjad S., and Sajjadi S., The Effect of Temperature and Nano-sized Calcium Carbonate on Tensile Properties of Medium Density Polyethylene, Iran J. Sci. Technol. (Persian) , 21, 133-140, 2008.
  7. Bhattacharya S., Kamal M., and Gupta R., Polymeric Nanocomposites: Theory and Practice, Munich, Germany, Hanser, 383, 2008.
  8. Kong X., Chakravarthula S., and Qiao Y., Evolution of Collective Damage in a Polyamide 6–Silicate Nanocomposite, J. Solids Struct., 43, 5969-5980, 2006.
  9. Mohsenzadeh R., Shelesh-Nezhad K., and Chakherlou T., Experimental and Finite Element Analysis on the Performance of Polyacetal/Carbon Black Nanocomposite Gears, Int., 107055, 2021.
  10. Kongkhlang T., Kousaka Y., Umemura T., Nakaya D., Thuamthong W., Pattamamongkolchai Y., and Chirachanchai S., Role of Primary Amine in Polyoxymethylene (POM)/Bentonite Nanocomposite Formation, Polymer, 49, 1676-1684, 2008.
  11. Mohd-Ishak Z., Kusmono K., Chow W., Takeichi T., and Rochmadi R., Effect of Organoclay Modification on the Mechanical, Morphology, and Thermal Propertiese of Injection Molded Polyamide6/Polypropylene/Montmorillonite Nanocomposites, PPS-24: The Polymer Processing Society 24th Annual Meeting, Salerno, Italy, June 15-19, 2008.
  12. Ghoreishy M.H.R., Firouzbakht M., and Naderi G., Effect of Carbon Black Blends on the Mechanical Properties of a Tread Compound for Passenger Radial Tires, Technol., 26, 45-56, 2013.
  13. Lohar G.S. and Jogi B.F., Influence of Carbon Black (CB) on Mechanical Behaviour and Microscopic Analysis of Poly-propylene (PP)/Acrylonitrile-Butadiene-Styrene (ABS) Nanocomposites, Procedia Manuf., 20, 85-90, 2018.
  14. Ciardiello R., Drzal L., and Belingardi G., Effects of Carbon Black and Graphene Nano-Platelet Fillers on the Mechanical Properties of Syntactic Foam, Struct., 178, 9-19, 2017.
  15. Islam I., Sultana S., Kumer Ray S., Parvin Nur H., and
    Hossain M., Electrical and Tensile Properties of Carbon Black Reinforced Polyvinyl Chloride Conductive Composites, C, 4, 15, 2018.
  16. Huang J.C., Carbon Black Filled Conducting Polymers and Polymer Blends, Polym. Technol., 21, 299-313, 2002.
  17. Gubbels F., Jérôme R., Teyssie P., Vanlathem E., Deltour R., Calderone A., Parente V., and Brédas J.-L., Selective Localization of Carbon Black in Immiscible Polymer Blends: A Useful Tool to Design Electrical Conductive Composites, Macromolecules, 27, 1972-1974, 1994.
  18. Zhang Q., Wang J., Zhang B.-Y., Guo B.-H., Yu J., and Guo Z.-X., Improved Electrical Conductivity of Polymer/Carbon Black Composites by Simultaneous Dispersion and Interaction-Induced Network Assembly, Sci. Technol., 179, 106-114, 2019.
  19. Zhang B.Y., Xu L., Guo Z.X., Yu J., and Nagai S., Effects of Glass Fiber on the Properties of Polyoxymethylene/Thermoplastic Polyurethane/Multiwalled Carbon Nanotube Composites, Compos., 38, 1319-1326, 2017.
  20. Tajima Y., Structure of Polyacetal Polymer Blends Filled with Carbon Black, Kobunshi Ronbunshu, 62, 104-108, 2005.
  21. Bagheri R., Takihamaarouf B., and Motevalian A., Effect of Synergism on Fracture Toughness of an Epoxy-Based Blend Containing Recycled Rubber Particles, Sci. Technol., 17, 267-272, 2005.
  22. Mortezaee M., Naveed Family M., and Mehrabzadeh M., On the Compatibility and Dynamic Vulcanization of POM/NBR Blends, Sci. Technol., 14, 159-164, 2001.
  23. Chiang W.Y. and Huang C.Y., The Effect of the Soft Segment of Polyurethane on Copolymer-Type Polyacetal/Polyurethane Blends, Appl. Polym. Sci., 38, 951-968, 1989.
  24. Palanivelu K., Balakrishnan S., and Rengasamy P., Thermoplastic Polyurethane Toughened Polyacetal Blends, Test., 19, 75-83, 2000.
  25. Uthaman R.N., Pandurangan A., and Majeed S.A., Mechanical, Thermal, and Morphological Characteristics of Compatibilized and Dynamically Vulcanized Polyoxymethylene/Ethylene Propylene Diene Terpolymer Blends, Eng. Sci., 47, 934-942, 2007.
  26. Pielichowski K. and Leszczynska A., Structure-Property Relationships in Polyoxymethylene/Thermoplastic Polyurethane Elastomer Blends, Polym. Eng., 25, 359-373, 2005.
  27. Mehrabzadeh M. and Rezaei A.D., Study on Physical and Mechanical Properties, Thermal Behaviour and Morphology of Polyacetal and Polyurethane Thermoplastic Elastomer Blends, Sci. Technol., 13, 139-147, 2000.
  28. Chiang W.Y. and Lo M.S., Properties of Copolymer-Type Polyacetal/Polyurethane Blends, Appl. Polym. Sci., 36, 1685-1700, 1988.
  29. Kumar G., Arindam M., Neelakantan N., and Subramanian N., Stress Relaxation Behavior of Polyacetal-Thermoplastic Polyurethane Elastomer Blends, Appl. Polym. Sci., 50, 2209-2216, 1993.
  30. Mehrabzadeh M. and Rezaie D., Impact Modification of Polyacetal by Thermoplastic Elastomer Polyurethane, Appl. Polym. Sci., 84, 2573-2582, 2002.
  31. Mousavi M.R., Tehran A.C., and Shelesh-Nezhad K., Study on Morphology, Mechanical, Thermal and Viscoelastic Properties of PA6/TPU/CNT Nanocomposites, Rubber Compos., 49, 400-413, 2020.
  32. Tehran A.C., Shelesh-Nezhad K., and Barazandeh F.J., Mechanical and Thermal Properties of TPU-Toughened PBT/CNT Nanocomposites, Thermoplast. Compos. Mater., 32, 815-830, 2019.
  33. Kahraman Y., Özdemir B., Kılıç V., Goksu Y.A., and Nofar M., Super Toughened and Highly Ductile PLA/TPU Blend Systems by In Situ Reactive Interfacial Compatibilization Using Multifunctional Epoxy-Based Chain Extender, Appl. Polym. Sci., 138, 50457, 2021.
  34. Nuez L., Jacquot P.-B., Léger R., Ienny P., and Perrin D., Improved Tear Resistance by Low Environmental Impact Coupling of Plasma Reactive and Additive Treatment of a TPU/PET Coated Fabric, Ind. Text., 2021. DOI: org/10.11771/ 15280837211038852
  35. Hosseinabadi M., Ghetmiri M., Dindarloo A.S., and Jahani Y., Polyacetal/Acrylonitrile-Butadiene-Styrene/Thermoplastic Polyurethane Blends and Their Nanocomposites Morphological and Rheological Behavior as a Tertiary Blend, Sci., Series A, 60, 816-827, 2018.
  36. Yang J., Yang W., Wang X., Dong M., Liu H., Wujcik E.K., Shao Q., Wu S., and Ding T., Synergistically Toughening Polyoxymethylene by Methyl Methacrylate–Butadiene–Styrene Copolymer and Thermoplastic Polyurethane, Chem. Phys., 220, 1800567, 2019.
  37. Domingues F.S., Geraldino H.C.L., Freitas T.K.F.d.S., de Almeida C.A., Figueiredo F.F.d., and Garcia J.C., Photocatalytic Degradation of Real Textile Wastewater Using Carbon Black-Nb2O5 Composite Catalyst under UV/Vis Irradiation, Technol., 42, 2335-2349, 2021.
  38. Kemal I., Whittle A., Burford R., Vodenitcharova T., and Hoffman M., Toughening of Unmodified Polyvinylchloride Through the Addition of Nanoparticulate Calcium Carbonate, Polymer, 50, 4066-4079, 2009.
  39. Fu S.-Y., Feng X.-Q., Lauke B., and Mai Y.-W., Effects of Particle Size, Particle/Matrix Interface Adhesion and Particle Loading on Mechanical Properties of Particulate–Polymer Composites, B: Eng., 39, 933-961, 2008.
  40. Xie X.-L., Liu Q.-X., Li R.K.-Y., Zhou X.-P., Zhang Q.-X., Yu Z.-Z., and Mai Y.-W., Rheological and Mechanical Properties of PVC/CaCO3 Nanocomposites Prepared by In Situ Polymerization, Polymer, 45, 6665-6673, 2004.
  41. Deshmane C., Yuan Q., and Misra R., On the Fracture Characteristics of Impact Tested High Density Polyethylene–Calcium Carbonate Nanocomposites, Sci. Eng: A, 452, 592-601, 2007.
  42. Mehrabzadeh M. and Rezaei A.D., Study on Physical and Mechanical Properties, Thermal Behaviour and Morphology of Polyacetal and Polyurethane Thermoplastic Elastomer Blends, J. Polym. Sci. Technol. (Persian), 13, 139-147, 2000.
  43. Zhang Q.-X., Yu Z.-Z., Xie X.-L., and Mai Y.-W., Crystallization and Impact Energy of Polypropylene/CaCO3 Nanocomposites with Nonionic Modifier, Polymer, 45, 5985-5994, 2004.
  44. Stan F., Sandu L.I., and Fetecau C., Effect of Processing Parameters and Strain Rate on Mechanical Properties of Carbon Nanotube–Filled Polypropylene Nanocomposites, B: Eng., 59, 109-122, 2014.
  45. Deblieck R.A., Van Beek D., Remerie K., and Ward I.M., Failure Mechanisms in Polyolefines: The Role of Crazing, Shear Yielding and the Entanglement Network, Polymer, 52, 2979-2990, 2011.
  46. Tanniru M. and Misra R., On Enhanced Impact Strength of Calcium Carbonate-Reinforced High-Density Polyethylene Composites, Sci. Eng., A, 405, 178-193, 2005.
  47. Hadal R., Yuan Q., Jog J., and Misra R., On Stress Whitening during Surface Deformation in Clay-Containing Polymer Nanocomposites: A Microstructural Approach, Sci. Eng., A, 418, 268-281, 2006.