Fabrication of Ultrasensitive Bio-Nanosensor Based on Polypyrrole/Graphene Nanocomposite

Document Type : Research Paper

Authors

1 Department of Nanotechnology Engineering, Faculty of Electrical and Computer Engineering,University of Tabriz, Postal Code 5166616471, Tabriz, Iran

2 Department of Organic Chemistry and Biochemistry, Faculty of Chemistry; University of Tabriz, Postal Code 5166616471, Tabriz, Iran

3 Department of Mechanical Engineering, Technical and Vocational University, Postal Code 1435761137, Tehran, Iran

Abstract

Hypothesis: Accurate temperature measurement is of particular importance in various medical and industrial fields. Researchers have recently developed heat-sensitive sensors with the development of nanotechnology. The goal of the present research is the fabrication of an ultra-sensitive thermal nanosensor that can be applied to monitor human body temperature and industrial tasks. 
Methods: For this purpose, polypyrrole and graphene nanocomposites were synthesized with different percentages. The structural characteristics of the obtained nanocomposites were assessed by electron scanning microscopy and X-ray diffraction spectroscopy (XRD). 
Findings: The results showed that synthetic graphene and polypyrrole are in the shape of sheets and fiber with a thickness less than 100 nm and diameter of 150 nm, respectively. The XRD spectrum of the 0.5% (by wt) nanocomposite also indicated a suitable combination of graphene and polypyrrole. The thermal biosensor evaluations of samples disclosed that pure polypyrrole allocated the first rank compared to other samples in the temperature range of 25-80°C, with a sensitivity of 218 kΩ/°C, but its nonlinear behavior limited its applicability. In this temperature range, 0.5% (by wt) nanocomposite sensor showed the highest optimal performance with the sensitivity, temperature coefficient resistance (TCR), response and recovery time of 197 kΩ/°C, -1.17 %°C-1, 78 and 170 s, respectively. In the temperature range of 35-40°C, to control the human body temperature, the nanocomposite sensor with the concentration of 0.5% (by wt) has the best linear performance with a sensitivity of 20.5 kΩ/˚C, TCR of -2.26% per°C and response and recovery times of 21 and 34 s. In  comparison to similar samples, this nanocomposite has improved by 23.9 and 1.8 times, with respective to the above recovery time. In the final conclusion, the nanocomposite sensor with a concentration of 0.5% (by wt) was designated as the most ideal nanosensor that can be utilized in industrial as well as medical fields.

Keywords


  1. Kim J. and Cui T., Graphene-Based Temperature Sensors Suspended by Anodic Aluminum Oxide, J. Chem. Phys., 153, 084701, 2020.
  2. Megha R., Ali F.A., Ravikiran Y.T., Ramana C.H.V.V., Kumar A.K., Mishra D.K., and Kim D., Conducting Polymer Nanocomposite Based Temperature Sensors, Inorg. Chem. Commun., 98, 11-28, 2018.
  3. Huang H., Su S., Wu N., Wan H., Wan S., Bi H., and Sun L., Graphene-Based Sensors for Human Health Monitoring, Front. Chem., 7, 399, 2019.
  4. Meng C., Liu C., Chen L., Hu C., and Fan S., Highly Flexible and All-Solid-State Paperlike Polymer Supercapacitors, Nano Lett., 10, 4025-4031, 2010.
  5. Naveen M.H., Gurudatt N.G., and Shim Y.B., Applications of Conducting Polymer Composites to Electrochemical Sensors, Appl. Mater. Today, 9, 419-433, 2017.
  6. Leal-Junior A., Frizera-Neto A., Marques C., and Pontes M.J., A Polymer Optical Fiber Temperature Sensor Based on Material Features, Sensors, 18, 301, 2018.
  7. Sahatiya P., Puttapati S.K., Srikanth V.V., and Badhulika S., Graphene-Based Wearable Temperature Sensor and Infrared Photodetector on a Flexible Polyimide Substrate, Flex. Print. Electron., 1, 025006, 2016.
  8. Kuzubasoglu B.A. and Bahadir S.K., Flexible Temperature Sensors, Sens. Actuator A- Phys., 315, 112282, 2020.
  9. Strümpler R., Polymer Composite Thermistors for Temperature and Current Sensors, Int. J. Appl. Phys., 80, 6091-6096, 1996.
  10. Guettiche D., Mekki A., Lilia B., Fatma-Zohra T., and Boudjellal A., Flexible Chemiresistive Nitrogen Oxide Sensors Based on a Nanocomposite of Polypyrrole-Reduced Graphene Oxide-Functionalized Carboxybenzene Diazonium Salts, J. Mater. Sci. Mater., 32, 10662-10677, 2021.
  11. Qin J., Shi X., Chang J., Dong Y., Zheng S., and Wu Z.S., Hierarchical Ordered Dual-Mesoporous Polypyrrole/Graphene Nanosheets as Bifunctional Active Materials for High-Performance Planar Integrated System of Micro Supercapacitor and Gas Sensor, Adv. Funct. Mater., 30, 1909756, 2020.
  12. Shoeb M., Mobin M., Ahmad S., and Naqvi A.H., Facile Synthesis of Polypyrrole Coated Graphene Gr/Ag–Ag2O/PPy Nanocomposites for a Rapid and Selective Response Towards Ammonia Sensing at Room Temperature, J. Sci. Adv. Mater. Dev., 6, 223-233, 2021.
  13. Basu S. and Bhattacharyya P., Recent Developments on Graphene and Graphene Oxide Based Solid State Gas Sensors, Sens. Actuators B: Chem., 173, 1-21, 2012.
  14. Javaid M., Haleem A., Rab S., Singh R.P., and Suman R., Sensors for Daily Life, Sensors Int., 2, 100121, 2021.
  15. Hosseingholipourasl A., Hafizah Syed Ariffin S., Al-Otaibi Y.D., Akbari E., Hamid F., Koloor S.S.R., and Petrů M., Analytical Approach to Study Sensing Properties of Graphene Based Gas Sensor, Sensors, 20, 1506, 2020.
  16. Robinson J.T., Perkins F.K., Snow E.S., Wei Z., and Sheehan P.E., Reduced Graphene Oxide Molecular Sensors, Nano Lett., 8, 3137-3140, 2008.
  17. Yu W., Sisi L., Haiyan Y., and Jie L., Progress in the Functional Modification of Graphene/Graphene Oxide, RSC Adv., 10, 15328-15345, 2020.
  18. Karimtehrani M., Ehsani Namin P., and Ghasemi I., Functionalization of Graphene Nanoplatelet and the Shape Memory Properties of Nanocomposite Based on Thermoplastic Elastomer Polyurethane/Poly(vinyl chloride)/Graphene Nanoplateletes, Iran. Polym. J., 30, 287-297, 2017.
  19. Madaeni S. and Khavaran B., Preparation of Conductive Membranes Using Polypyrrole, Polym. Sci. Technol., 15, 355-366, 2003.
  20. Pan L., Qiu H., Dou C., Li Y., Pu L., Xu J., and Shi Y., Conducting Polymer Nanostructures Template Synthesis and Applications in Energy Storage, Int. J. Mol. Sci., 11, 2636-2657, 2010.
  21. Russo M.V., Fratoddi I., and Venditti I., Nanostructured Macromolecules, Adv. Macromol.,1-78, 2010.
  22. Gerard M., Chaubey A., and Malhotra B., Application of Conducting Polymers to Biosensors, Biosens. Bioelectron., 17, 345-359, 2002.
  23. Ni T., Xu L., Sun Y., Yao W., Dai T., and Lu Y., Facile Fabrication of Reduced Graphene Oxide/Polypyrrole Composite Hydrogels with Excellent Electrochemical Performance and Compression Capacity, ACS. Sustain. Chem. Eng., 3, 862-870, 2015.
  24. Ghosh D.S., Calizo I., Teweldebrhan D., Pokatilov E.P., Nika D.L., Balandin A.A., and Lau C.N., Extremely High Thermal Conductivity of Graphene, Prospects for Thermal Management Applications in Nanoelectronic Circuits, Appl. Phys. Lett., 92, 151911, 2008.
  25. Sahoo S., Barik S.K., Sharma G.L., Khurana G., Scott J.F., and Katiyar R.S., Reduced Graphene Oxide as Ultra-Fast Temperature Sensor, arXiv., 2, 1204-1928, 2012.
  26. Yang J., Wei D., Tang L., Song X., Luo W., Chu J., and Du C., Wearable Temperature Sensor Based on Graphene Nanowalls, RSC Adv., 5, 25609-25615, 2015.
  27. Simon I., Haiduk Y., Mülhaupt R., Pankov V., and Janiak C., Selected Gas Response Measurements Using Reduced Graphene Oxide Decorated with Nickel Nanoparticles, Nano Mater. Sci., 3, 412-419, 2021.
  28. Xuan X., Yoon H.S., and Park J.Y., A Wearable Electrochemical Glucose Sensor Based on Simple and Low-Cost Fabrication Supported Micro-Patterned Reduced Graphene Oxide Nanocomposite Electrode on Flexible Substrate, Biosens. Bioelectron., 109, 75-82, 2018.
  29. Trung T.Q. and Lee N.E., Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human Activity Monitoringand Personal Healthcare, Adv. Mater., 28, 4338-4372, 2016.
  30. Neella N., Gaddam V., Nayak M., Dinesh N., and Rajanna K., Scalable Fabrication of Highly Sensitive Flexible Temperature Sensors Based on Silver Nanoparticles Coated Reduced Graphene Oxide Nanocomposite Thin Films, Sensor. Actuat. A-Phys., 268, 173-182, 2017.
  31. Yang X., Cao L., Wang J., and Chen L., Sandwich-Like Polypyrrole/Reduced Graphene Oxide Nanosheets Integrated Gelatin Hydrogel as Mechanically and Thermally Sensitive Skinlike Bioelectronics, ACS. Sustain. Chem. Eng., 8, 10726-10739, 2020.
  32. Guo J., Wang R., Tjiu W.W., Pan J., and Liu T., Synthesis of Fe Nanoparticles@Graphene Composites for Environmental Applications, J. Hazard. Mater., 225, 63-73, 2012.
  33. Li S., Shu K., Zhao C., Wang C., Guo Z., Wallace G., and Liu H.K., One-Step Synthesis of Graphene/Polypyrrole Nanofiber Composites as Cathode Material for a Biocompatible Zinc/Polymer Battery, ACS Appl. Mater. Interfaces, 6, 16679-16686, 2014.
  34. Liu G., Wang L., Wang B., Gao T., and Wang D., A Reduced Graphene Oxide Modified Metallic Cobalt Composite with Superior Electrochemical Performance for Supercapacitors, RSC Adv., 5, 63553-63560, 2015.
  35. Wang W., Hao Q., Lei W., Xia X., and Wang X., Graphene/SnO2/Polypyrrole Ternary Nanocomposites as Supercapacitor Electrode Materials, RSC Adv., 2, 10268-10274, 2012.
  36. Chen M.L., Park C.Y., Choi J.G., and Oh W.C., Synthesis and Characterization of Metal (Pt, Pd and Fe)-Graphene Composites, J. Korean Ceram. Soc., 48, 147-151, 2011.
  37. Chitte H.K., Bhat N.V., Gore M.A.V., and Shind G.N., Synthesis of Polypyrrole Using Ammonium Peroxy Disulfate (APS) as Oxidant Together with Some Dopants for Use in Gas Sensors, Mater. Sci. Appl., 2, 1491, 2011.
  38. Fan X., Yang Z., and He N., Hierarchical Nanostructured Polypyrrole/Graphene Composites as Supercapacitor Electrode, RSC Adv., 5, 15096-15102, 2015.
  39. Cho G., Fung B.M., Glatzhofer D.T., Lee J.S., and Shul Y.G., Preparation and Characterization of Polypyrrole-Coated Nanosized Novel Ceramics, Langmuir, 17, 456-461, 2001.
  40. Zhang J., Yang H., Shen G., Cheng P., Zhang J., and Guo S., Reduction of Graphene Oxide via L-Ascorbic Acid, Chem. Commun., 46, 1112-1114, 2010.
  41. Singh A. and Chandra A., Graphite Oxide/Polypyrrole Composite Electrodes for Achieving High Energy Density Supercapacitors, J. Appl. Electrochem., 43, 773-782, 2013.
  42. Cao N. and Zhang Y., Study of Reduced Graphene Oxide Preparation by Hummers’ Method and Related Characterization, J. Nanomater., 2015, 2, 2015.
  43. Murugesan B., Pandiyan N., Arumugam M., Sonamuthu J., Samayanan S., Yurong C., and Mahalingam S., Fabrication of Palladium Nanoparticles Anchored Polypyrrole Functionalized Reduced Graphene Oxide Nanocomposite for Antibiofilm Associated Orthopedic Tissue Engineering, Appl. Surf. Sci., 510, 145403, 2020.
  44. Tiwari D.C., Atri P., and Sharma R., Sensitive Detection of Ammonia by Reduced Graphene Oxide/Polypyrrole Nanocomposites, Synth. Met., 203, 228-234, 2015.
  45. Garg P., Soni R.K., and Raman R., Graphene Oxide–Silver Nanocomposite SERS Substrate for Sensitive Detection of Nitro Explosives, J. Mater. Sci. Mater., 31, 1094-1104, 2020.
  46. Arami H., Mazloumi M., Khalifehzadeh R., Emami S.H., and Sadrnezhaad S.K., Polypyrrole/Multiwall Carbon Nanotube Nanocomposites Electropolymerized on Copper Substrate, Mater. Lett., 61, 4412-4415, 2007.
  47. Sahoo S., Karthikeyan G., Nayak G.C., and Das C.K., Electrochemical Characterization of in Situ Polypyrrole Coated Graphene Nanocomposites, Synth. Met., 161, 1713-1719, 2011.
  48. Ghavidel A.K., Zadshakoyan M., Arjmand M., and Kiani G., A Novel Electro-Mechanica Technique for Efficient Dispersion of Carbon Nanotubes in Liquid Media, Int. J. Mech. Sci., 207, 106633, 2021.
  49. Ghavidel A.K., Zadshakoyan M., and Arjmand M., Mechanical Analysis of Aligned Carbon Nanotube Bundles Under Electric Field, Int. J. Mech. Sci., 196, 106289, 2021.
  50. Ghavidel A.K., Zadshakoyan M., and Kiani G., Fabrication of Carbon Nanotubes-Based Efficient Electromagnetic Waves Shields Nanocomposites Using Electro-Mechanically Dispersion Technique, J. Compos. Sci. Technol., 8, 1737-1744, 2022.
  51. Kuznetsov V.L., Bokova-Sirosh S.N., Moseenkov S.I., Ishchenko A.V., Krasnikov D. V., Kazakova M.A., and Obraztsova E.D., Raman Spectra for Characterization of Defective CVD Multi-Walled Carbon Nanotubes, Phys. Status Solidi B, 251, 2444-2450, 2014.
  52. Saner B., Gürsel S.A., and Yürüm Y., Layer-by-Layer Polypyrrole Coated Graphite Oxide and Graphene Nanosheets as Catalyst Support Materials for Fuel Cells, Fuller. Nanotub. Carbon Nanost., 21, 233-247, 2013.
  53. Bose S., Kuila T., Nguyen T.X.H., Kim N.H., Lau K.T., and Lee J.H., Polymer Membranes for High Temperature Proton Exchange Membrane Fuel Cell: Recent Advances and Challenges, Prog. Polym. Sci., 36, 813-843, 2011.
  54. Choi Y.J., Kim E., Han J., Kim J.H., and Gurunathan S., A Novel Biomolecule-Mediated Reduction of Graphene Oxide: A Multifunctional Anti-Cancer Agent, Molecules, 21, 375, 2016.
  55. Ambrosetti G., Grimaldi C., Balberg I., Maeder T., Danani A., and Ryser P., Solution of the Tunneling-Percolation Problem in the Nanocomposite Regime, Phys. Rev. B: Condens. Matter., 81, 155434, 2010.
  56. Ghavidel A.K., Azdast T., Shabgard M.R., Navidfar A., and Shishavan S.M., Effect of Carbon Nanotubes on Laser Cutting of Multi-Walled Carbon Nanotubes/Polymethyl Methacrylate Nanocomposites, Opt. Laser. Technol.67, 119-124, 2015.
  57. Fratini S., Nikolka M., Salleo A., Schweicher G., and Sirringhaus H., Charge Transport in High-Mobility Conjugated Polymers and Molecular Semiconductors, Nat. Mater., 19, 491-502, 2020.
  58. Kiani G., Nourizad A., and Nosrati R., In-Situ Chemical Synthesis of Polypyrrole/Silver Nanocomposite for the Use as a Room Temperature Ammonia Gas Sensor, Fibers. Polym., 19, 2188-2194, 2018.
  59. Arkhipov V., Heremans P., Emelianova E., Adriaenssens G., and Bässler H., Charge Carrier Mobility in Doped Semiconducting Polymers, Appl. Phys. Lett., 82, 3245-3247, 2003.
  60. Volkov A.V., Singh S.K., Stavrinidou E., Gabrielsson R., Franco-Gonzalez J.F., Cruce A., and Zozoulenko I.V., Spectroelectrochemistry and Nature of Charge Carriers in Self Doped Conducting Polymer, Adv. Electron. Mater., 3, 1700096, 2017.
  61. Ahmadian Hoseini A.H., Arjmand M., Sundararaj U., and Trifkovic M., Significance of Interfacial Interaction and Agglomerates on Electrical Properties of Polymer-Carbon Nanotube Nanocomposites, Mater. Des., 125, 126-134, 2017.
  62. Gnanasekaran K., Grimaldi C., de With G., and Friedrich H., A Unified View on Nanoscale Packing, Connectivity, and Conductivity of CNT Networks, Adv. Funct. Mater., 29, 1807901, 2019.
  63. Payandehpeyman J., Mazaheri M., and Khamehchi M., Prediction of Electrical Conductivity of Polymer-Graphene Nanocomposites by Developing an Analytical Model Considering Interphase, Tunneling and Geometry Effects, Compos. Commun., 21, 100364, 2020.
  64. Mahmoodi M., Electrical, Thermal, and Machining Behaviour of Injection Moulded Polymeric CNT Nanocomposites, PhD Thesis, Department of Mechanical and Manufacturing Engineering Calgary, Alberta, 2013.
  65. Liu G., Tan Q., Kou H., Zhang L., Wang J., Lv W., and Xiong J., A Flexible Temperature Sensor Based on Reduced Graphene Oxide for Robot Skin Used in Internet of Things, Sensors, 18, 1400, 2018.
  66. Wang L., Liu F., Jin C., Zhang T., and Yin Q., Preparation of Polypyrrole/Graphene Nanosheets Composites with Enhanced Thermoelectric Properties, RSC Adv., 4, 46187-46193, 2014.
  67. Gounder Thangamani J., Deshmukh K., Sadasivuni K.K., Ponnamma D., Goutham S., Venkateswara Rao K., and Khadheer Pasha S.K., White Graphene Reinforced Polypyrrole and Poly(vinyl alcohol) Blend Nanocomposites as Chemiresistive Sensors for Room Temperature Detection of Liquid Petroleum Gases, Mikrochim. Acta, 184, 3977-3987, 2017.