Non-Chemical Routes to Tailor Polymer Polydispersity, Activity and Fragmentation Mechanism of ZN Catalytic Systems in Heterogeneous Propylene Polymerization

Document Type : Research Paper

Authors

Department of Polymer Engineering, Amirkabir University of Technology, P.O. Box: 15875-4413, Tehran, Iran

Abstract

Hypothesis: Modifications in chemical formulations of existing commercial polymerization catalysts may deteriorate other catalyst properties, especially stereo- and region-selectivity. Therefore, an absolute necessity for petrochemical polymerization facilities is to find feasible non-chemical routes for tailoring essential parameters, including molecular weight distribution (MWD) width, activity and fragmentation mechanism in order to modify existing catalytic systems. 
Methods: To this goal, use is made of a recently developed single-particle multipore model (MPM), which describes the reaction-diffusion processes involved in the heterogeneous olefin polymerization to investigate the impacts of initial catalyst porosity, initial catalyst particle size, bulk monomer concentration and pore size arrangement on the above-mentioned parameters. 
Findings: Modeling a supported Ziegler-Natta catalyst system showed that increasing the initial catalyst porosity or initial particle size or decreasing the bulk monomer concentration decreased the local reaction rate distribution width, resulting in narrower MWDs. Although, the polydispersity index generally changed oppositely due to its dependence on the location of the MWD in addition to its width. The model has elucidated and rationalized two unexplained experimental observations, i.e., increasing initial porosity reduces the catalyst activity in some studies and that polydispersity index generally changes irregularly and unpredictably with bulk monomer concentration. For the physical quantities studied in this work, the reaction rate is directly related to the MWD width, revealing that a trade-off between MWD width and yield should be sought for applications that require higher resistance to melt fracture phenomena, edge waviness and draw resonance. While, the reaction rate, MWD width and polydispersity index did not show any relationship with the participation ratio of the two fragmentation mechanisms. Increasing the initial catalyst porosity or the initial particle radius intensified the more preferred continuous bisection mechanism, thereby dropping the probability in fouling.

Keywords


  1. Geyer R., Jambeck J.R., and Law K.L., Production, Use, and Fate of all Plastics Ever Made, Sci. Adv., 3, e1700782, 2017.
  2. Gao Y., Chen J., Wang Y., Pickens D.B., Motta A., Wang O.J., Chung Y.W., and Lohr T.L., Marks Highly Branched Polyethylene Oligomers via Group IV-Catalysed Polymerization in very Nonpolar Media, Nat. Catal., 2, 236-242, 2019.
  3. Chiusoli G.P. and Maitlis P.M., Metal-Catalysis in Industrial Organic Processes, RSC, Cambridge, 2019.
  4. Huang C., Zakharov V.A., Semikolenova N.V., Matsko M.A., Mahmood Q., Talsi E.P., and Sun W.H., Comparisons Between Homogeneous and Immobilized 1-(2,6-dibenzhydryl-4-nitrophenylimino)-2-Mesityliminoacenaphthylnickel Bromide as a Precatalyst in Ethylene Polymerization, J. Catal., 372, 103-108, 2019.
  5. Velthoen M.E., Munoz-Murillo A., Bouhmadi A., Cecius M., Diefenbach S., and Weckhuysen B.M., The Multifaceted Role of Methylaluminoxane in Metallocene-Based Olefin Polymerization Catalysis, Macromolecules, 51, 343-355, 2018.
  6. Zanoni S., Nikolopoulos N., Welle A., Vantomme A., and Weckhuysen B.M., Early-Stage Particle Fragmentation Behavior of a Commercial Silica-Supported Metallocene Catalyst, Catal. Sci. Technol., 11, 5335-5348, 2021.
  7. Casalini T. , Visscher F., Tamaddoni M., Friederichs N., Bertola F., Soltani G., and Morbidelli M., The Effect of Residence Time Distribution on the Slurry-Phase Catalytic Ethylene Polymerization: An Experimental and Computational Study, Macromol. React. Eng., 12, 1700058, 2018.
  8. Kulkarni S., Mishra V., and Bontu N.M., A Comprehensive Model for the Micro and Meso-Scale Level Olefin Polymerization: Framework and Predictions, Iran. Polym. J., 28, 597-609, 2019.
  9. Alizadeh A. and McKenna T.F., Particle Growth During the Polymerization of Olefins on Supported Catalysts. Part 2: Current Experimental Understanding and Modeling Progresses on Particle Fragmentation, Growth, and Morphology Development, Macromol. React. Eng., 12, 1700027, 2018.
  10. Werny M.J., Valadian R., Lohse L.M., Robisch A.L., Zanoni S., Hendriksen C., Weckhuysen B.M., and Meirer F., X-Ray Nanotomography Uncovers Morphological Heterogeneity in a Polymerization Catalyst at Multiple Reaction Stages, Chem. Catal., 1, 1413-1426, 2021.
  11. Zubov A., Pechackova L., Seda L., Bobak M., and Kosek J., Transport and Reaction in Reconstructed Porous Polypropylene Particles: Model Validation, Chem. Eng. Sci., 65, 2361-2372, 2010.
  12. Meisterová L., Zubov A., Smolná K., Štěpánek F., and Kosek J., X-Ray Tomography Imaging of Porous Polyolefin Particles in an Electron Microscope, Macromol. React. Eng., 7, 277-288, 2013.
  13. Thakur A.K., Gupta S.K., and Chaudhari P., Slurry-Phase Ethylene Polymerization Processes: A Review on Multiscale Modeling and Simulations, Rev. Chem. Eng., 35, 2020. DOI: org/10.1515/revce-2020-0048
  14. Sheikhzadeh M. and Pourmahdian S., A Multipore Model for Heterogeneous Catalytic Polymerization: Structure-Performance Relationships, Macromol. React. Eng., 2100021, 2021.
  15. Barz M., Luxenhofer R., Zentel R., and Vicent M.J., Overcoming the PEG-Addiction: Well-Defined Alternatives to PEG, from Structure-Property Relationships to Better Defined Therapeutics, Polym. Chem., 2, 1900-1918, 2011.
  16. Olsen B.D., Jang S.-Y., Lüning J.M., and Segalman R.A., Higher Order Liquid Crystalline Structure in Low-Polydispersity DEH-PPV, Macromolecules, 39, 4469-4479, 2006.
  17. Qu M., Qin Y., Zhu K., Zhu K., and Schubert D.W., Study on the Spinnability and Mechanical Properties of Aspirator Aided Melt-Spun Binary Blends Polypropylene Fibers, Polym. Adv. Technol., 32, 4840-4850, 2021.
  18. Al-Malaika S., Daraz U., and Issenhuth S., Effect of Processing Conditions and Catalyst Type on the Thermal Oxidative Degradation Mechanisms and Melt Stability of Metallocene and Ziegler-Catalyzed Ethylene-1-Hexene Copolymers, J. Vinyl Add. Technol., 2021. DOI:org/10.1002/vnl.21881
  19. Allal A. and Vergnes B., Molecular Design to Eliminate Sharkskin Defect for Linear Polymers, J. Non-Newton. Fluid Mech., 146, 45-50, 2007.
  20. Ansari M., Derakhshandeh M., Doufas A.A., Tomkovic T., and Hatzikiriakos S.G., The Role of Microstructure on Melt Fracture of Linear Low Density Polyethylenes, Polym. Test., 67, 266-274, 2018.
  21. Barborik T. and Zatloukal M., Steady-State Modeling of Extrusion Cast Film Process, Neck-in Phenomenon, and Related Experimental Research: A Review, Phys. Fluids, 32, 061302, 2020.
  22. Pol H.V., Thete S.S., Doshi P., and Lele A.K., Necking in Extrusion Film Casting: The Role of Macromolecular Architecture, J. Rheol., 57, 559-583, 2013.
  23. Saastamoinen J., Influence of the Solute’s Molecular Weight Distribution on the Spinnability of Cellulose-Ionic Liquid Solutions, MSc Thesis, 2011.
  24. Das A., Gilmer E.L., Biria S., and Bortner M.J., Importance of Polymer Rheology on Material Extrusion Additive Manufacturing: Correlating Process Physics to Print Properties, ACS Appl. Polym. Mater., 3, 1218-1249, 2021.
  25. Tang D., Marchesini F.H., Cardon L., and D’hooge D.R., State of the-Art for Extrudate Swell of Molten Polymers: From Fundamental Understanding at Molecular Scale toward Optimal Die Design at Final Product Scale, Macromol. Mater. Eng., 305, 2000340, 2020.
  26. Goryunov G.P., Sharikov M.I., Iashin A.N., Canich J.A.M., Mattler S.J., Hagadorn J.R., Uborsky D.V., and Voskoboynikov A.Z., Rigid Postmetallocene Catalysts for Propylene Polymerization: Ligand Design Prevents the Temperature-Dependent Loss of Stereo- and Regioselectivities, ACS Catal., 11, 8079-8086, 2021.
  27. Piovano A. and Groppo E., Flexible Ligands in Heterogeneous Catalysts for Olefin Polymerization: Insights from Spectroscopy, Coord. Chem. Rev., 451, 214258, 2022.
  28. McDaniel M., Influence of Catalyst Porosity on Ethylene Polymerization, ACS Catal., 1, 1394-1407, 2011.
  29. Abboud M., Denifl P., and Reichert K.H., Fragmentation of Ziegler-Natta Catalyst Particles During Propylene Polymerization, Macromol. Mater. Eng., 290, 558-564, 2005.
  30. McKenna T.F., Tioni E., Ranieri M.M., and Alizadeh A., Catalytic Olefin Polymerisation at Short Times: Studies Using Specially Adapted Reactors, Can. J. Chem. Eng., 91, 669-686, 2013.
  31. Tisse V.F., Prades F., Briquel R., Boisson C., and McKenna T.F., Role of Silica Properties in the Polymerisation of Ethylene Using Supported Metallocene Catalysts, Macromol. Chem. Phys., 211, 91-102, 2010.
  32. Bashir M., Impact of Physical Properties of Silica Supported Metallocenes on Their Ethylene Polymerisation Kinetics and Polyethylene Properties, PhD Thesis, Université Claude Bernard Lyon-1, Villeurbanne, 2016.
  33. Dwivedi S., Taniike T., and Terano M., Understanding the Chemical and Physical Transformations of a Ziegler–Natta Catalyst at the Initial Stage of Polymerization Kinetics: The Key Role of Alkylaluminum in the Catalyst Activation Process, Macromol. Chem. Phys., 215, 1698-1706, 2014.
  34. Dashti A., Ramazani S.A.A., Hiraoka Y., Yull Kim S., Taniike T., and Terno M., Kinetic and Morphological Study of a Magnesium Ethoxide-Based Ziegler-Natta Catalyst for Propylene Polymerization, Polym. Int., 58, 40-45, 2009.

35    Dashti A. and Ramazani S.A., Experimental Investigation and Modeling of Particle Growth in Propylene Polymerization, 8th World Congress of Chemical Engineering, The Canadian Society for Chemical Engineering, August 23–27, 2009.

  1. Taniike T. , Quoc Thang V., Tien Binh N., Hiraoka Y., Uozumi T., and Terano M., Initial Particle Morphology Development in Ziegler-Natta Propylene Polymerization Tracked with Stopped-Flow Technique, Macromol. Chem. Phys., 212, 723-729, 2011.
  2. Hiraoka Y., Kim S.Y., Dashti A., Taniike T., and Terano M., Similarities and Differences of the Active Sites in Basic and Advanced MgCl2-Supported Ziegler-Natta Propylene Polymerization Catalysts, Macromol. React. Eng., 4, 510-515, 2010.
  3. Dashti A., Ramazani S.A., and Hiraoka Y., Kim S.Y., Taniike T., and Terano M., Kinetic and Morphological Investigation on the Magnesium Ethoxide-Based Ziegler-Natta Catalyst for Propylene Polymerization Using Typical External Donors, Macromol. Symposia, 285, 2-57, 2009.
  4. Fisch A.G., dos Santos J.H., Cardozo N.S., and Secchi A.R. Mass Transfer in Olefin Polymerization: Estimative of Macro-and Microscale Diffusion Coefficients Through the Swollen Polymer, Chem. Eng. Sci., 63, 3727-3739, 2008.
  5. Lewis R.A. Hawley’s Condensed Chemical Dictionary, John Wiley and Sons, 2016.
  6. Mark J.E., Physical Properties of Polymers Handbook, 1076, Springer, 2007.
  7. Rudin A. and Choi P., The Elements of Polymer Science and Engineering, Academic, 2012.
  8. Thomassen L.C. Aerts A.,  Rabolli V., Lison D., Gonzalez L., Kirsch-Volders M., Napierska D., Hoet P.H.,  Kirschhock C.E.A., and Martens J.A., Synthesis and Characterization of Stable Monodisperse Silica Nanoparticle Sols for In Vitro Cytotoxicity Testing, Langmuir, 26, 328-335, 2010.
  9. Gu J., Liu J., Li Y., Zhao W., and Shi J., One-pot Synthesis of Mesoporous Silica Nanocarriers with Tunable Particle Sizes and Pendent Carboxylic Groups for Cisplatin Delivery, Langmuir, 29, 403-410, 2013.
  10. Mikenas T.B., Koshevoy E.I., Cherepanova S.V., and Zakharov V.A., Study of the Composition and Morphology of New Modifications of Titanium-Magnesium Catalysts with Improved Properties in Ethylene Polymerization, J. Polym. Sci., Part A: Polym. Chem., 54, 2545-2558, 2016.
  11. Salakhov I., Batyrshin A.Z., Sergeev S.A., Bukatov G.D., Barabanov A.A., Mats’ko M.A., Sakhabutdinov A.G., and Zakharov V.A., Effect of Titanium-Magnesium Catalyst Morphology on the Properties of Polypropylene Upon Propylene Polymerization in a Liquid Monomer, Catal. Indust., 8, 213-216, 2016.
  12. Sultan S., Fernando W., and Sata S.A., Modeling and Experimental Evaluation of Single Particle Growth in Syndiotactic Polymerization of Styrene, J. Mater. Eng. Perform., 22, 2148-2160, 2013.
  13. Sarkar P. and Gupta S.K., Simulation of Propylene Polymerization: An Efficient Algorithm, Polymer, 33, 1477-1485, 1992.
  14. Ha K.S., Yoo K.Y., and Rhee H.K., Modeling and Analysis of a Slurry Reactor System for Heterogeneous Olefin Polymerization: The Effects of Hydrogen Concentration and Initial Catalyst Size, J. Appl. Polym. Sci., 79, 2480-2493, 2001.
  15. Tioni E., Broyer J.P., Monteil V., and McKenna T., Influence of Reaction Conditions on Catalyst Behavior During the Early Stages of Gas Phase Ethylene Homo- and Copolymerization, Indust. Eng. Chem. Res., 51, 14673-14684, 2012.
  16. Han J.J., Lee H.W., Yoon W.J., and Choi K.Y., Rate and Molecular Weight Distribution Modeling of Syndiospecific Styrene Polymerization over Silica-Supported Metallocene Catalyst, Polymer, 48, 6519-6531, 2007.
  17. Song F., Cannon R.D., and Bochmann M., Zirconocene-Catalyzed Propene Polymerization: A Quenched-Flow Kinetic Study, J. Am. Chem. Soc., 125, 7641-7653, 2003.