Document Type : Review
Authors
1
Department of Organic Chemistry and Polymer, Faculty of Chemisty, University of Isfahan, Postal Code 81746-73441, Isfahan, Iran
2
Department of Organic Chemistry and Polymer, Faculty of Chemistry, University of Isfahan, Postal Code 81746-73441, Isfahan, Iran
Abstract
Today, the specialists’ attention on polyurethanes is increasing day by day due to easy synthesis, available raw materials, favorable mechanical properties, biocompatibility, and the possibility of providing different products, such as water-based polyurethanes, foams, hydrogels and glues. Chitosan is a natural polymer that is extracted from the deacetylation of chitin and contains glucosamine and N-acetyl glucosamine units. This non-toxic natural polymer has very useful properties such as antimicrobial activity, biocompatibility, biodegradability, and tissue repair and regeneration effects. One of the weaknesses of chitosan is its poor solubility and processability due to its strong intra- and intermolecular hydrogen bonding. Therefore, chitosan has been used mainly in modified form or in combination with other polymers in various applications. The combination of synthetic polymers with natural polymers is of particular importance because natural polymers such as chitosan can show some properties such as biocompatibility, biodegradability, low toxicity, high cell viability, and internal tissue growth; while the synthetic polymers have other characteristics such as favorable processing, mechanical and physical properties, and appropriate chemical and thermal stability. Recently, chitosan has been used in combination with polyurethanes to improve its mechanical properties, thermal stability, biodegradability, antimicrobial properties and biological activity. During these studies, products in various forms such as composite, elastomer, fiber, foam, scaffold, and hydrogel have been prepared for different applications. In this review, polyurethanes containing chitosan and their synthesis methods for various applications are discussed. The products prepared in these studies have been suggested for various applications such as antibacterial coating, wound dressing, tissue engineering scaffold, fabric modification, fibers, hydrogels and foams.
Keywords