Stiffness Matrices and Anisotropy in the Trapezoidal Corrugated Composite Sheets

Document Type : Research Paper

Authors

1 Department of Mechanical Engineering, Faculty of Engineering and Technology, Tarbiat Modares University, P.O. Box: 14115-143, Tehran, Iran

2 Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, P.O. Box: 15655-461, Tehran, Iran

Abstract

In the some applications like as morphing technology, high strain and anisotropic behavior are essential design requirements. The corrugated composite sheets due to their special geometries have potential to high deflection under axial loading through longitudinal direction of corrugation. In this research, the strain and the anisotropic behavior of corrugated composite sheets are investigated by fabricating glass/epoxy samples with trapezoidal geometries. For evaluation of the mechanical behavior of the composites the samples were subjected to tension and flexural tests in the longitudinal and transverse directions of corrugation. In order to determine anisotropic behavior of the corrugated sheets, two approaches were introduced: (1) tensile anisotropic (E*) and (2) flexural anisotropic (D*). The anisotropic behavior and ultimate deflections were investigated theoretically and experimentally. In this paper, mechanical behaviors based on theoretical and experimental analysis including the elastic constants and stiffness matrices of trapezoidal corrugated composite sheets were studied and the results were verified by finite element method. The results of the numerical and analytical solutions were compared with those of experimental tests. Finally, the load-displacement curves of tensile tests in longitudinal direction of corrugation, the ultimate deflection and anisotropy behavior of these exclusive composite sheets in the corrugated composite sheets were studied experimentally. The experimental results of the trapezoidal corrugated sheets showed that one of the most important parameters in the ultimate strain was amplitude of the corrugation elements. Generally, increasing the amplitude and element per length unit of trapezoidal corrugated specimen led to higher ultimate strain.

Keywords