بررسی رفتار ترشدگی غشای الیاف ‌توخالی پلی‌پروپیلنی نانوکامپوزیتی به‌عنوان تماس‌دهنده غشایی برای حذف کربن دی‌اکسید

نوع مقاله: پژوهشی

نویسندگان

تبریز، دانشگاه صنعتی سهند، صندوق پستی1996-51335؛ 1- دانشکده مهندسی شیمی، 2- مرکز تحقیقات فناوری غشا

چکیده

تماس‌دهنده‌های غشایی گاز-مایع به‌عنوان یکی از جایگزین‌های بالقوه برای حذف کربن دی‌اکسید در مقایسه با فناوری‌های متداول درنظر گرفته شده‌اند. با وجود این، ترشدگی غشاها به‌وسیله جاذب‌های مایع طی این فرایند، عملکرد تماس‌دهنده‌های غشایی را محدود می‌کند که این موضوع ضرورت استفاده از غشاهای ابرآب‌گریز را در این سامانه‌ها نشان می‌دهد. در سال‌های اخیر، استفاده از نانوذرات برای افزایش آب‌گریزی سطح غشاهای پلیمری و ساخت غشاهای نانوکامپوزیتی به‌طور قابل ملاحظه‌ای مورد توجه پژوهشگران قرار گرفته است. در راستای کاهش مشکل ترشدگی غشاها، در پژوهش پیش رو از نانوذرات سیلیکای پیوندخورده با گروه‌ عاملی متیل (CH3SiO2) برای افزایش آب‌گریزی سطح غشای پلی‌پروپیلنی استفاده شد که این نانوذرات با روش سل-ژل سنتز شدند. غشاهای ساخته شده با آزمون‌های ATR-FTIR،FE-SEM،XRD  و اندازه‌گیری زاویه تماس، استحکام مکانیکی و فشار نفوذ بحرانی ارزیابی شدند. نتایج حاصل از آزمون ATR-FTIR سنتز نانوذرات سیلیکای اصلاح‌شده با عامل متیل را روی سطح غشای پلی‌پروپیلنی تأیید کرد. نتایج حاصل از اندازه‌گیری زاویه تماس نیز نشان داد، در غشاهای نانوکامپوزیتی با افزایش نسبت مولی MTES/TEOS از 1 تا 4، اندازه زاویه تماس از °125 تا °164 افزایش یافته ولی با افزایش بیشتر نسبت مولی MTES/TEOS اندازه زاویه تماس کاهش یافته است. همچنین با دقت در نتایج حاصل از اندازه‌گیری استحکام مکانیکی می‌توان دریافت، سنتز نانوذرات، استحکام کششی غشا را تا 12.8MPa افزایش داده است. در نهایت، عملکرد غشاها در تماس‌دهنده‌های غشایی برای جذب گاز کربن دی‌اکسید ارزیابی شد که نتایج حاکی از کاهش شدید شار عبوری برای غشاهای خالص در مقایسه با غشاهای نانوکامپوزیتی بود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Wetting Behavior of Nanocomposite Polypropylene Hollow Fiber Membrane as a Membrane Contactor for CO2 Removal

نویسندگان [English]

  • Parya Amirabedi
  • Reza Yegani
  • Ali Akbari
1. Faculty of Chemical Engineering, 2. Membrane Technology Research Center; Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran
چکیده [English]

Hypothesis: Gas-liquid membrane contactors have been considered as one of the potential alternatives for CO2 removal compared to conventional technologies. However, membranes wetting with liquid absorbents during this process limits membrane contactors application, which indicates the need for the use of hydrophobic membranes in these systems. In recent years, the use of nanoparticles to increase the hydrophobicity of polymer membrane surfaces and fabrication of nanocomposite membranes has been considerably investigated by researchers.
Methods: In order to reduce the wetting problem of membranes, in the present work, methyl grafted silica nanoparticles (CH3SiO2 NPs) were used to increase surface hydrophobicity of the polypropylene (PP) hollow fiber membranes, which were synthesized by the sol-gel method. Prepared membranes were characterized by ATR-FTIR, XRD, FE-SEM, contact angle, mechanical strength and breakthrough pressure.
Findings: The obtained results from ATR-FTIR analysis confirmed the presence of methyl grafted silica NPs on the surface of PP membrane. The results of the contact angle measurement showed that for nanocomposite membranes by increasing the MTES/TEOS molar ratio from 1 to 4, the contact angle increased from 125° to 164°; however, the contact angle decreased with further increase in the molar ratio of MTES/TEOS. Also, with the precision in the results of mechanical strength measurement, it can be seen that the synthesis of NPs on the membrane surface as well as in the cross-section increased the tensile strength of the membrane to 12.8 MPa. Finally, the performance of membranes was investigated in the membrane contactors for CO2 absorption, which results in a significant decrease in the flux for pure membranes compared with nanocomposite membranes.

کلیدواژه‌ها [English]

  • membrane contactor
  • Hydrophobicity
  • nanocomposite membrane
  • Polypropylene
  • silica nanoparticles

1.Yan S.-P., Fang M.-X., Zhang W.-F., Wang S.-Y., Xu Z.-K., Luo Z.-Y., and Cen K.-F., Experimental Study on the Separation of CO2 from flue Gas Using Hollow Fiber Membrane Contactors without Wetting, Fuel Process. Technol., 88, 501-511, 2007.
2.Rahim N.A., Ghasem N., and Al-Marzouqi M., Absorption of CO2 from Natural Gas Using Different Amino Acid Salt Solutions and Regeneration Using Hollow Fiber Membrane Contactors, J. Nat. Gas Sci. Eng., 26, 108-117, 2015.
3.Naim R., Ismail A.F., Cheer N.B., and Abdullah M.S., Polyvinylidene Fluoride and Polyetherimide Hollow Fiber Membranes for CO2 Stripping in Membrane Contactor, Chem. Eng. Res. Des., 92, 1391-1398, 2014.
4.Luis P., Van Gerven T., and Van der Bruggen B., Recent Developments in Membrane-Based Technologies for CO2 Capture, Prog. Energy Combust. Sci., 38, 419-448, 2012.
5.Ahmadi H., Hashemifard S., and Ismail A., A Research on CO2 Removal via Hollow Fiber Membrane Contactor: The Effect of Heat Treatment, Chem. Eng. Res. Des., 120, 218-230, 2017.
6.Zhang Y. and Wang R., Gas-Liquid Membrane Contactors for Acid Gas Removal: Recent Advances and Future Challenges, Curr. Opin. Chem. Eng., 2, 255-262, 2013.
7.Zhao S., Feron P.H.M., Deng L., Favre E., Chabanon E., Yan S., Hou J., Chen V., and Qi H., Status and Progress of Membrane Contactors in Post-combustion Carbon Capture: A State-Of-The-Art Review of New Developments, J. Membr. Sci., 511, 180-206, 2016.
8.Mosadegh-Sedghi S., Rodrigue D., Brisson J., and Iliuta M.C., Wetting Phenomenon in Membrane Contactors–Causes and Prevention, J. Membr. Sci., 452, 332-353, 2014.
9.Yu X., An L., Yang J., Tu S.T., and Yan J., CO2 Capture Using a Superhydrophobic Ceramic Membrane Contactor, J. Membr. Sci., 496, 1-12, 2015.
10.Mansourizadeh A. and Ismail A.F., Hollow Fiber Gas-Liquid Membrane Contactors for Acid Gas Capture: A Review, J. Hazard. Mater., 171, 38-53, 2009.
11.Rahbari-Sisakht M., Rana D., Matsuura T., Emadzadeh D., Padaki M., and Ismail A.F., Study on CO2 Stripping from Water Through Novel Surface Modified PVDF Hollow Fiber Membrane Contactor, Chem. Eng. J., 246, 306-310, 2014.
12.Hashemifard S.A., Matsuura T., Ismail A.F., Rezaei Dasht Arzhandi M., Rana D., and Bakeri G., Characterization of Partial Pore Wetting in Hollow Fiber Gas Absorption Membrane Contactors: An EDX Analysis Approach, Chem. Eng. J., 281, 970-980, 2015.
13.Rangwala H.A., Absorption of Carbon Dioxide into Aqueous Solutions Using Hollow Fiber Membrane Contactors, J. Membr. Sci., 112, 229-240, 1996.
14.Zhang Y., Wang R., Yi S., Setiawan L., Hu X., and Fane A.G., Novel Chemical Surface Modification to Enhance Hydrophobicity of Polyamide-Imide (PAI) Hollow Fiber Membranes, J. Membr. Sci., 380, 241-250, 2011.
15.Rezaei M., Ismail A.F., Hashemifard S.A., and Matsuura T., Preparation and Characterization of PVDF-Montmorillonite Mixed Matrix Hollow Fiber Membrane for Gas-Liquid Contacting Process, Chem. Eng. Res. Des., 92, 2449-2460, 2014.
16.Maroufkhani M. and Golshan Ebrahimi N., Melt Rheology of Linear and Long-Chain Branched Polypropylene Blends, Iran. Polym. J., 24, 715-724, 2015.
17.Lv Y., Yu X., Jia J., Tu S.T., Yan J., and Dahlquist E., Fabrication and Characterization of Superhydrophobic Polypropylene Hollow Fiber Membranes for Carbon Dioxide Absorption, Appl. Energy, 90, 167-174, 2012.
18.Alonso Y.N., Grafia A.L., Castillo L.A., and Barbosa S.E., Lemon Essential Oil Desorption from Polypropylene/Talc Nanocomposite Films, Iran. Polym. J., 25, 999-1008, 2016.
19.Zhang Y. and Wang R., Fabrication of Novel Polyetherimide-Fluorinated Silica Organic-Inorganic Composite Hollow Fiber Membranes Intended for Membrane Contactor Application, J. Membr. Sci., 443, 170-180, 2013.
20.Ahsani M. and Yegani R., Study on the Fouling Behavior of Silica Nanocomposite Modified Polypropylene Membrane in Purification of Collagen Protein, Chem. Eng. Res. Des., 102, 261-273, 2015.
21.Fosi-Kofal M., Mustafa A., Ismail A.F., Rezaei-DashtArzhandi M., and Matsuura T., PVDF/CaCO3 Composite Hollow Fiber Membrane for CO2 Absorption in Gas–Liquid Membrane Contactor, J. Nat. Gas Sci. Eng., 31, 428-436, 2016.
22.Ghaee A., Ghadimi A., Sadatnia B., Ismail A.F., Mansourpour Z., and Khosravi M., Synthesis and Characterization of Poly(vinylidene fluoride) Membrane Containing Hydrophobic Silica Nanoparticles for CO2 Absorption from CO2/N2 Using Membrane Contactor, Chem. Eng. Res. Des., 120, 47-57, 2017.
23.Ramezani M., Vaezi M.R., and Kazemzadeh A., The Influence of the Hydrophobic Agent, Catalyst, Solvent and Water Content on the Wetting Properties of the Silica Films Prepared by One-Step Sol–Gel Method, Appl. Surf. Sci., 326, 99-106, 2015.
24.Jeevajothi K., Crossiya D., and Subasri R., Non-fluorinated, Room Temperature Curable Hydrophobic Coatings by Sol–Gel Process, Ceram. Int., 38, 2971-2976, 2012.
25.Amiri S. and Rahimi A., Hybrid Nanocomposite Coating by Sol–Gel Method: A Review, Iran. Polym. J., 25, 559-577, 2016.
26.Sohrabi S. and Akhlaghian F., The Effect of Fe-Loading and Calcination Temperature on the Activity of Fe/TiO2 in Phenol Degradation, Iran. J. Chem. Chem. Eng. (IJCCE), 35, 43-50, 2016.
27.Balaji J. and Sethuraman M.G., Corrosion Protection of Copper with Hybrid Sol-Gel Containing 1H-1, 2, 4-Triazole-3-Thiol, Iran. J. Chem. Chem. Eng. (IJCCE), 35, 61-71, 2016.
28.Nørgaard A.W., Mass Spectrometric Study of Nanofilm Products-Chemistry, Exposure and Health Effects, PhD Thesis, University of Copenhagen, December 2010.
29.Yang H., Pi P., Cai Z.Q., Wen X., Wang X., Cheng J., and Yang Z.-r., Facile Preparation of Super-Hydrophobic and Super-oleophilic Silica Film on Stainless Steel Mesh via Sol–Gel Process, Appl. Surf. Sci., 256, 4095-4102, 2010.
30.Behboudi A., Jafarzadeh Y., and Yegani R., Enhancement of Antifouling and Antibacterial Properties of PVC Hollow Fiber Ultrafiltration Membranes Using Pristine and Modified Silver Nanoparticles, J. Environ. Chem. Eng., 6, 1764-1773, 2018.
31.Lv Y., Yu X., Tu S.-T., Yan J., and Dahlquist E., Wetting of Polypropylene Hollow Fiber Membrane Contactors, J. Membr. Sci., 362, 444-452, 2010.
32.Akbari A., Yegani R., Pourabbas B., and Behboudi A., Fabrication and Study of Fouling Characteristics of HDPE/PEG Grafted Silica Nanoparticles Composite Membrane for Filtration of Humic Acid, Chem. Eng. Res. Des., 109, 282-296, 2016.
33.Alavi S.A., Kargari A., Karimi M., Sanaeepur H., and Lariji S., Effects of Preparation Conditions on Morphology of Polyacrylonitrile Micro/Ultrafiltration Membrane and Its Application in Protein and Fat Separation from Milk, Iran. J. Polym. Sci. Technol. (Persian), 27, 63-78, 2014.
34.Bian J., Wang Z.J., Lin H.L., Zhou X., Xiao W.Q., and Zhao X.W, Thermal and Mechanical Properties of Polypropylene Nanocomposites Reinforced with Nano-SiO2 Functionalized Graphene Oxide. Compos. Part. A. Appl. Sci. Manuf., 97,120-127, 2017.
35.Esmaeilipur M., Kargari A., and Sanaeepur H., Preparation and Characterization of a Cross-linked Matrimid/Polyvinylidene Fluoride Composite Membrane for H2/N2 Separation, Iran. J. Polym. Sci. Technol. (Persian), 29, 505-517, 2017.
36.Hassanajili S. and Sajedi M.T., Fumed Silica/Polyurethane Nanocomposites: Effect of Silica Concentration and Its Surface Modification on Rheology and Mechanical Properties, Iran. Polym. J., 25, 697-710, 2016.
37.Estella J., Echeverría J.C., Laguna M., and Garrido J.J., Silica Xerogels of Tailored Porosity as Support Matrix for Optical Chemical Sensors. Simultaneous Effect of pH, Ethanol: TEOS and Water: TEOS Molar Ratios, and Synthesis Temperature on Gelation Time, and Textural and Structural Properties, J. Non-Cryst. Solids, 353, 286-294, 2007.