مروری بر روش‌های تهیه هیدروژل‌های تزریق‌پذیر تشکیل‌شونده درجا و کاربردهای آن‌ها در مهندسی بافت

نوع مقاله: مروری

نویسندگان

1 تهران، پژوهشگاه پلیمر و پتروشیمی ایران، پژوهشکده علوم پلیمر، گروه پلیمرهای زیست‌سازگار، صندوق پستی 112-14975

2 تهران، پژوهشگاه پلیمر و پتروشیمی ایران، پژوهشکده فرایند پلیمر، گروه رنگ، رزین و پوشش‌های سطح، صندوق پستی 112-14975

3 تهران، دانشگاه علوم پزشکی ایران، مرکز تحقیقات سوختگی، صندوق پستی 354-14665

10.22063/jipst.2020.1727

چکیده

مهندسی بافت، مثلثی با سه ضلع از انواع مختلف سلول‌ها، زیست‌مولکول‌های کوچک، عامل رشد و داربست با هدف بازیابی، ترمیم و بهبود عملکرد بافت است. در مهندسی بافت، چسبندگی، رشد، تکثیر و تمایز سلول‌ها نیازمند کنترل دقیق عامل‌های بیرونی نظیر خواص فیزیکی داربست به‌عنوان ماتریس برون‌سلولی (ECM)، نوع و مقدار مولکول‌های فعال زیستی‌ مانند زیست‌مولکول‌های کوچک، پپتیدها و پروتئین‌هاست. بنابراین برهم‌کنش داربست‌های سنتزی و طبیعی با سلول‌ها، باید بازتابی از ریزمحیط سلولی در بدن باشد. در این مقاله، روش‌های مختلف تهیه هیدروژل‌های تزریق‌پذیر تشکیل‌شونده درجا با کاربرد پزشکی و بازسازی بافت شرح داده شده که با پیوندهای شیمیایی یا برهم‌کنش‌های فیزیکی شبکه‌ای می‌شوند. این نوع هیدروژل‌ها در کاربردهای مهندسی بافت بسیار جالب توجه هستند. زیرا به‌آسانی می‌توانند سلول‌ها یا زیست‌مولکول‌ها‌ را به بافت آسیب‌دیده انتقال دهند. نبود سمیت شدید و وجود حداقل جراحت و درد هنگام جراحی در بیمار از برتری‌های هیدروژل‌های تزریق‌شونده است. روش‌های شیمیایی متنوعی مانند شیمی کلیک، افزایش Michael، باز شیف و واکنش آنزیمی برای شبکه‌ای‌کردن هیدروژل‌های تزریق‌پذیر به‌کار گرفته شده است. برخی از هیدروژل‌ها را می‌توان با برهم‌کنش‌های فیزیکی نظیر برهم‌کنش‌های یونی، پیوند هیدروژنی و برهم‌کنش ابرمولکولی بدون وجود عامل‌های بیرونی در شرایط فیزیولوژی بدن تهیه کرد. در این مطالعه، افزون بر روش‌های مختلف تهیه، جنبه‌های کاربردی این هیدروژل‌ها در پزشکی ترمیمی و دستاورد‌های حاصل از آن در مهندسی بافت مرور می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis Methods of In Situ Forming Injectable Hydrogels and Their Applications in Tissue Engineering: A Review

نویسندگان [English]

  • Ali Moradian 1
  • Mojgan Zandi 1
  • Morteza Behzadnasab 2
  • Mohamad Pezeshki-Modaress 3
1 Department of Biomaterials, Faculty of Polymer Science, Faculty of Polymer Processing; Iran Polymer and Petrochemical Institute, P.O. Box 14975-112 Tehran, Iran
2 Departments of Colour, Resin and Surface Coatings, Faculty of Polymer Processing; Iran Polymer and Petrochemical Institute, P.O. Box 14975-112 Tehran, Iran
3 Burn Research Center, Iran University of Medical Sciences, P.O. Box 14665-354, Tehran, Iran
چکیده [English]

Tissue engineering is a triad involves three components of different types of cells, growth factor, small biomolecules and scaffold for the purpose of tissue restore, repair and regeneration. In tissue engineering, attachment, growth, proliferation and differentiation of cells require careful control of external factors such as the physical properties of the scaffold as extra cellular matrix (ECM), type and amount of biologically active molecules like small biomolecules, peptides and proteins. Therefore, the interaction of the synthetic and natural scaffolds with the cells must reflect the cellular microenvironment in the body. In this study, we describe a variety of in situ forming injectable hydrogels synthesis with the medical application and tissue regeneration that are crosslinked by chemical bonding or physical interactions. These types of hydrogels have attracted a lot of attention in tissue engineering applications because they can easily transfer the cells or delivered the biomolecules to the damaged tissue. Lack of severe toxicity, minimal injury and pain during surgery could be the other advantages of the injectable hydrogels. A wide variety of chemical methods have been used to crosslink the injectable hydrogels such as click chemistry, Michael addition, Schiff-base, enzymatic reaction and, etc. Some hydrogels can also be cross-linked using physical interactions such as ionic interactions, hydrogen bonding, supramolecular interaction, etc., without external factors in the physiological conditions of the body. In this study, in addition to various methods of synthesis, the practical aspects of hydrogels in regenerative medicine and their achievements in tissue engineering are discussed.

کلیدواژه‌ها [English]

  • tissue engineering
  • scaffold
  • injectable hydrogel
  • chemical bonding
  • physical interaction
  1. Lanza R., Langer R., and Vacanti J.P., Principles of Tissue Engineering, 4 th ed., Elsevier, 237-259, 2013.
  2. The Extracellular Matrix: An Overview, Mecham R.P. (Ed.), Springer Berlin Heidelberg, 1-39, 2011.
  3. Varki A., Cummings R.D., Esko J.D., Freeze H.H., Stanley P., Bertozzi, C.R., Hart G.W., and Etzler M.E., Essentials of Glycobiology, Cold Spring Harbor Laboratory, 30-49, 2009.
  4. Jurgen Schiller K.L., The Detailed Structural Characterization of Chemically Modified Glycosaminoglycans is Absolutely Essential to Explain Potential Biological Effectsm, J. Glycomics Lipidomics, 04, 1-10, 2014.
  5. Bast R.C., Hennessy B., and Mills G.B., The Biology of Ovarian Cancer: New Opportunities for Translation, Nat. Rev. Cancer, 9, 415-428, 2009.
  6. Lutolf M.P., Gilbert P.M., and Blau H.M., Designing Materials to Direct Stem-Cell Fate, Nature, 462, 433-441, 2009.
  7. Yi S., Ding F., Gong L., and Gu X., Extracellular Matrix Scaffolds for Tissue Engineering and Regenerative Medicine, Curr. Stem Cell Res. Ther, 12, 233-246, 2017.
  8. Bakhtiar H., Pezeshki-Modaress M., Kiaipour, Z., Shafiee M., Ellini M. R., Mazidi A., Rajabi S., Zamanlui Benisi S., Ostad S.N., Galler K., Pakshir, P., Azarpazhooh A., and Kishen A., Pulp ECM-derived Macroporous Scaffolds for Stimulation of Dental-pulp Regeneration Process, Dent. Mater, 36, 76-87, 2020.
  9. Eltom A., Zhong G., and Muhammad A., Scaffold Techniques and Designs in Tissue Engineering Functions and Purposes: A Review, Adv. Mater. Sci. Eng., 2019, 1-13, 2019.
  10. Moradian A.  and Khademzadeh J., Biodegradable and Biocompatible Synthetic Polymers for Tissue Engineering, Iran. Polym. Technol. Res. Dev., (Persian), 3, 63-78, 2018.
  11. Dash M., Chiellini F., Ottenbrite R.M., and Chiellini E., Chitosan-A Versatile Semi-Synthetic Polymer in Biomedical Applications, Prog. Polym. Sci., 36, 981-1014, 2011.
  12. Puppi D., Chiellini F., Piras A.M., and Chiellini E., Polymeric Materials for Bone and Cartilage Repair, Prog. Polym. Sci., 35, 403-440, 2010.
  13. Sadeghi A., Zandi M., Pezeshki-Modaress M., and Rajabi S., Tough, Hybrid Chondroitin Sulfate Nanofibers as a Promising Scaffold for Skin Tissue Engineering, Int. J. Biol. Macromol., 132, 63-75, 2019.
  14. Chai Q., Jiao Y., and Yu, X., Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them, Gels, 3, 6-15, 2017.
  15. Seliktar D., Designing Cell-Compatible Hydrogels for Biomedical Applications, Science, 336, 1124-1138, 2012.
  16. Lowman A.M., Dziubla T.D., Bures P., and Peppas N.A., Structural and Dynamic Response of Neutral and Intelligent Networks in Biomedical Environments, Adv. Chem. Eng., 29, 75-130, 2004.
  17. Lee J.H., Injectable Hydrogels Delivering Therapeutic Agents for Disease Treatment and Tissue Engineering, Biomater. Res., 22, 27-41, 2018.
  18. Ko D.Y., Shinde U.P., Yeon B., and Jeong B., Recent Progress of In Situ Formed Gels for Biomedical Applications, Prog. Polym. Sci., 38, 672-701, 2013.
  19. Yu L. and Ding J., Injectable Hydrogels as Unique Biomedical Materials, Chem. Soc. Rev., 37, 1473-1481, 2008.
  20. Liu M., Zeng X., Ma C., Yi H., Ali Z., Mou X., Li S., Deng Y., He N., Injectable Hydrogels for Cartilage and Bone Tissue Engineering, Bone Res., 5, 1-20, 2017.
  21. Nair D.P., Podgórski M., Chatani S., Gong T., Xi W., Fenoli C.R., and Bowman C.N., The Thiol-Michael Addition Click Reaction: A Powerful and Widely Used Tool in Materials Chemistry, Chem. Mater., 26, 724-744, 2014.
  22. McCall J.D. and Anseth K.S., Thiol-Ene Photopolymerizations Provide a Facile Method to Encapsulate Proteins and Maintain Their Bioactivity, Biomacromolecules, 13, 2410-2417, 2012.
  23. Matsumoto M., Udomsinprasert W., Laengee P., Honsawek S., Patarakul K., and Chirachanchai S., A Water-Based Chitosan-Maleimide Precursor for Bioconjugation: An Example of a Rapid Pathway for an In Situ Injectable Adhesive Gel, Macromol. Rapid Commun., 37, 1618-1622, 2016.
  24. Jin R., Moreira Teixeira L.S., Krouwels A., Dijkstra P.J., van Blitterswijk C.A., Karperien M., and Feijen J., Synthesis and Characterization of Hyaluronic acid–Poly(ethylene glycol) Hydrogels via Michael addition: An Injectable Biomaterial for Cartilage repair, Acta Biomater., 6, 1968-1977, 2010.
  25. Yang J.A., Kim H., Park K., and Hahn S.K., Molecular Design of Hyaluronic Acid Hydrogel Networks for Long-Term Controlled Delivery of Human Growth Hormone, Soft Matter, 7, 868-870, 2011.
  26. Cai S., Liu Y., Zheng Shu X., and Prestwich G.D., Injectable Glycosaminoglycan Hydrogels for Controlled Release of Human Basic Fibroblast Growth Factor, Biomaterials, 26, 6054-6067, 2005.
  27. Liu Y., Shu X.Z., and Prestwich G.D., Reduced Postoperative Intra-Abdominal Adhesions Using Carbylan-SX, a Semisynthetic Glycosaminoglycan Hydrogel, Fertil. Steril., 87, 940-948, 2007.
  28. Wiley K.L., Ovadia E.M., Calo C.J., Huber R.E., and Kloxin A.M., Rate-based Approach for Controlling the Mechanical Properties of ‘Thiol–ene’ Hydrogels Formed with Visible Light, Polym. Chem., 10, 4428-4440, 2019.
  29. Worrell B.T., Malik J.A., and Fokin V.V., Direct Evidence of a Dinuclear Copper Intermediate in Cu(I)-Catalyzed Azide-Alkyne Cycloadditions, Science, 340, 457-460, 2013.
  30. Schöffler A.L., Makarem A., Rominger F., and Straub B.F., Dinuclear Thiazolylidene Copper Complex as Highly Active Catalyst for Azid-Alkyne Cycloadditions, Beilstein J. Org. Chem., 12, 1566-1572, 2016.
  31. Jewett J.C. and Bertozzi C.R., Cu-free Click Cycloaddition Reactions in Chemical Biology, Chem. Soc. Rev., 39, 1272-1279, 2010.
  32. Takahashi A., Suzuki Y., Suhara T., Omichi K., Shimizu A., Hasegawa, K., Kokudo N., Ohta S., and Ito T., In Situ Cross-Linkable Hydrogel of Hyaluronan Produced via Copper-Free Click Chemistry, Biomacromolecules, 14, 3581-3588, 2013.
  33. van Dijk M., van Nostrum C.F., Hennink W.E., Rijkers D.T.S., and Liskamp R.M.J., Synthesis and Characterization of Enzymatically Biodegradable PEG and Peptide-Based Hydrogels Prepared by Click Chemistry, Biomacromolecules, 11, 1608-1614, 2010.
  34. Nguyen Q.V., Huynh D.P., Park J.H., and Lee D.S., Injectable Polymeric Hydrogels for the Delivery of Therapeutic Agents: A Review, Eur. Polym. J., 72, 602-619, 2015.
  35. Collins J., Xiao Z., Müllner M., and Connal L.A., The Emergence of Oxime Click Chemistry and Its Utility in Polymer Science, Polym. Chem., 7, 3812-3826, 2016.
  36. Tan H., Chu C.R., Payne K.A., and Marra K.G., Injectable In Situ Forming Biodegradable Chitosan–Hyaluronic Acid Based Hydrogels for Cartilage Tissue Engineering, Biomaterials, 30, 2499-2506, 2009.
  37. Wang D.A., Varghese S., Sharma B., Strehin I., Fermanian S., Gorham J., Fairbrother D.H., Cascio B., and Elisseeff J.H., Multifunctional Chondroitin Sulphate for Cartilage Tissue–Biomaterial Integration, Nat. Mater., 6, 385-392, 2007.
  38. Emami Z., Ehsani M., Zandi M., and Foudazi R., Controlling Alginate Oxidation Conditions for Making Alginate-Gelatin Hydrogels, Carbohydr. Polym., 198, 509-517, 2018.
  39. Hozumi T., Kageyama T., Ohta S., Fukuda J., and Ito T., Injectable Hydrogel with Slow Degradability Composed of Gelatin and Hyaluronic Acid Cross-Linked by Schiff’s Base Formation, Biomacromolecules, 19, 288-297, 2018.
  40. Lee F., Bae K.H., and Kurisawa M., Injectable Hydrogel Systems Crosslinked by Horseradish Peroxidase, Biomed. Mater., 11, 1-14, 2015.
  41. Kim K.S., Park S.J., Yang J.A., Jeon J.H., Bhang S.H., Kim B.S., and Hahn S.K., Injectable Hyaluronic Acid–Tyramine Hydrogels for the Treatment of Rheumatoid Arthritis, Acta Biomater., 7, 666-674, 2011.
  42. Jin R., Moreira Teixeira L.S., Dijkstra P.J., van Blitterswijk C.A., Karperien M., and Feijen J., Chondrogenesis in Injectable Enzymatically Crosslinked Heparin/Dextran Hydrogels, J. Control. Release, 152, 186-195, 2011.
  43. Lee F., Bae K.H., and Kurisawa M., Injectable Hydrogel Systems Crosslinked by Horseradish Peroxidase, Biomed. Mater., 11, 1-14, 2015.
  44. Elisseeff J., Anseth K., Sims D., McIntosh W., Randolph M., and Langer R., Transdermal Photopolymerization for Minimally Invasive Implantation, Proc. Natl. Acad. Sci., 96, 3104-3107, 1999.
  45. Ghasaban S., Atai M., Imani M., Zandi M., and Shokrgozar M.A., Photo-Crosslinkable Cyanoacrylate Bioadhesive: Shrinkage Kinetics, Dynamic Mechanical Properties, and Biocompatibility of Adhesives Containing TMPTMA and POSS Nanostructures as Crosslinking Agents, J. Biomed. Mater. Res. Part A, 99, 240-248, 2011.
  46. Yoshii E., Cytotoxic effects of Acrylates and Methacrylates: Relationships of Monomer Structures and Cytotoxicity, J. Biomed. Mater. Res., 37, 517-524, 1997.
  47. Pereira I.H.L., Ayres E., Patrício P.S., Góes A.M., Gomide V.S., Junior, E.P., and Oréfice R.L., Photopolymerizable and Injectable Polyurethanes for Biomedical Applications: Synthesis and Biocompatibility, Acta Biomater, 6, 3056-3066, 2010.
  48. Ovsianikov A., Malinauskas M., Schlie S., Chichkov B., Gittard S., Narayan R., Löbler M., Sternberg K., Schmitz K.P., and Haverich A., Three-dimensional Laser Micro- and Nano-structuring of Acrylated Poly(ethylene glycol) Materials and Evaluation of Their Cytoxicity for Tissue Engineering Applications, Acta Biomater, 7, 967-974, 2011.
  49. Nichol J.W., Koshy S.T., Bae H., Hwang C.M., Yamanlar S., and Khademhosseini A., Cell-laden Microengineered Gelatin Methacrylate Hydrogels, Biomaterials, 31, 5536-5544, 2010.
  50. Pahoff S., Meinert C., Bas O., Nguyen L., Klein T.J., and Hutmacher D.W., Effect of Gelatin Source and Photoinitiator Type on Chondrocyte Redifferentiation in Gelatin Methacryloyl-based Tissue-Engineered Cartilage Constructs, J. Mater. Chem. B, 7, 1761-1772, 2019.
  51. Seo J.Y., Lee B., Kang T.W., Noh J.H., Kim M.J., Ji Y.B., Ju H.J., Min B.H., and Kim M.S., Electrostatically Interactive Injectable Hydrogels for Drug Delivery, Tissue Eng. Regen. Med., 15, 513-520, 2018.
  52. Tønnesen H.H. and Karlsen J., Alginate in Drug Delivery Systems, Drug Dev. Ind. Pharm., 28, 621-630, 2002.
  53. Nair L.S. and Laurencin C.T., Biodegradable Polymers as Biomaterials, Prog. Polym. Sci., 32, 762-798, 2007.
  54. Sun J.Y., Zhao X., Illeperuma W.R.K., Chaudhuri O., Oh K.H., Mooney D.J., Vlassak J.J., and Suo Z., Highly Stretchable and Tough Hydrogels, Nature, 489, 133-136, 2012.
  55. Zhao L., Weir M. D., and Xu H.H.K., An Injectable Calcium Phosphate-Alginate Hydrogel-Umbilical Cord Mesenchymal Stem Cell Paste for Bone Tissue Engineering, Biomaterials, 31, 6502-6510, 2010.
  56. Kuo C.K. and Ma P.X., Ionically Crosslinked Alginate Hydrogels as Scaffolds for Tissue Engineering: Part 1. Structure, Gelation Rate and Mechanical Properties, Biomaterials, 22, 511-521, 2001.
  57. Kuo C.K., Ma P.X., Maintaining Dimensions and Mechanical Properties of Ionically Crosslinked Alginate Hydrogel Scaffolds In Vitro, J. Biomed. Mater. Res. A., 84, 899-907, 2008.
  58. Daemi H., Mashayekhi M., and Pezeshki Modaress M., Facile Fabrication of Sulfated Alginate Electrospun Nanofibers, Carbohydr. Polym., 198, 481-485, 2018.
  59. Lee K.Y. and Mooney D.J., Alginate: Properties and Biomedical Applications, Prog. Polym. Sci., 37, 106-126, 2012.
  60. Chou A.I., Akintoye S.O., and Nicoll S.B., Photo-crosslinked Alginate Hydrogels Support Enhanced Matrix Accumulation by Nucleus Pulposus Cells In Vivo, Osteoarthr. Cartil., 17, 1377-1384, 2009.
  61. Igarashi T., Iwasaki N., Kawamura D., Tsukuda Y., Kasahara Y., Todoh M., Tadano S., and Minami A., Therapeutic Effects of Intra-Articular Ultrapurified Low Endotoxin Alginate Administration on Experimental Osteoarthritis in Rabbits, Cartilage, 3, 70-78, 2012.
  62. Pezeshki-Modaress M., Rajabi-Zeleti S., Zandi M., Mirzadeh H., Sodeifi N., Nekookar A., and Aghdami N., Cell-loaded Gelatin/Chitosan Scaffolds Fabricated by Salt-Leaching/Lyophilization for Skin Tissue Engineering: In Vtro and In Vivo Study, J. Biomed. Mater. Res. Part A, 102, 3908-3917, 2014.
  63. Berger J., Reist M., Mayer J., Felt O., and Gurny R., Structure and Interactions in Chitosan Hydrogels Formed by Complexation or Aggregation for Biomedical Applications, Eur. J. Pharm. Biopharm., 57, 35–52, 2004.
  64. Jamali Firouzabadi V. and Kokabi M.,  Triple Stimuli Responsive Poly(vinyl alcohol)Chitosan/Nanoclay/Nanosilver Nanocomposite Hydrogel, Iran. J. Polym. Sci. Technol. (Persian), 32, 3-14, 2019.
  65. Tan H. and Marra K.G., Injectable, Biodegradable Hydrogels for Tissue Engineering Applications, Materials (Basel), 3, 1746-1767, 2010.
  66. Yan J., Yang L., Wang G., XiaoY., Zhang B., and Qi N., Biocompatibility Evaluation of Chitosan-based Injectable Hydrogels for the Culturing Mice Mesenchymal Stem Cells In Vitro, J. Biomater. Appl., 24, 625-637, 2010.
  67. Klouda L. and Mikos A.G., Thermoresponsive Hydrogels in Biomedical Applications, Eur. J. Pharm. Biopharm., 68, 34-45, 2008.
  68. Zandi M. and Mirzadeh H., Effects of Concentration, Temperature, and pH on Chain Mobility of Gelatin during Early Stages of Gelation, Iran. Polym. J., 16, 861-870, 2007.
  69. Ruel-Gariépy E. and Leroux J.C., In Situ-Forming Hydrogels-Review of Temperature-Sensitive Systems, Eur. J. Pharm. Biopharm., 58, 409-426, 2004.
  70. Alexandridis P., Zhou D., and Khan A., Lyotropic Liquid Crystallinity in Amphiphilic Block Copolymers: Temperature Effects on Phase Behavior and Structure for Poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) Copolymers of Different Composition, Langmuir, 12, 2690-2700, 1996.
  71. Seyedlar R.M., Imani M., Atai M., and Nodehi A., Temperature-Responsive Hydrogels: Materials, Mechanisms and Biological Applications, Iran. J. Polym. Sci. Technol. (Persian), 31, 211-237, 2018.
  72. Zhang W., Jin X., Li H., Zhang R., and Wu C., Injectable and Body Temperature Sensitive Hydrogels Based on Chitosan and Hyaluronic Acid for pH Sensitive Drug Release, Carbohydr. Polym., 186, 82-90, 2018.
  73. Ha D.I., Lee S.B., Chong M.S., Lee Y.M., Kim S.Y., and Park Y.H., Preparation of Thermo-responsive and Injectable Hydrogels Based on Hyaluronic Acid and Poly(N-isopropylacrylamide) and Their Drug Release Behaviors, Macromol. Res., 14, 87-93, 2006.
  74. Fusco S., Borzacchiello A., and Netti P.A., Perspectives on: PEO-PPO-PEO Triblock Copolymers and Their Biomedical Applications, J. Bioact. Compat. Polym., 21, 149-164, 2006.
  75. Jeong B., Bae Y.H., and Kim S.W., In Situ Gelation of PEG-PLGA-PEG Triblock Copolymer Aqueous Solutions and Degradation Thereof, J. Biomed. Mater. Res., 50, 171-177, 2000.
  76. Massumi M., Abasi M., Babaloo H., Terraf P., Safi M., Saeed M., Barzin J., Zandi M., and Soleimani M., The Effect of Topography on Differentiation Fates of Matrigel-Coated Mouse Embryonic Stem Cells Cultured on PLGA Nanofibrous Scaffolds, Tissue Eng., Part A, 18, 609-620, 2012.
  77. Liu H., Slamovich E.B., and Webster T.J., Less Harmful Acidic Degradation of Poly(lactic-co-glycolic acid) Bone Tissue Engineering Scaffolds Through Titania Nanoparticle Addition, Int. J. Nanomed., 1, 541-545, 2006.
  78. Xu X.D., Zhang X.Z., Cheng S.X., Zhuo R.X., and Kennedy J.F., A Strategy to Introduce the pH Sensitivity to Temperature Sensitive PNIPAAm Hydrogels without Weakening the Thermosensitivity, Carbohydr. Polym., 68, 416-423, 2007.
  79. Kim H.K., Shim W.S., Kim S.E., Lee K.H., Kang E., Kim J.H., Kim K., Kwon I.C., Lee D.S., Injectable In Situ–Forming pH/Thermo-Sensitive Hydrogel for Bone Tissue Engineering, Tissue Eng. Part A, 15, 923-933, 2009.
  80. Khan S., Akhtar N., Minhas M.U., and Badshah S.F., pH/Thermo-Dual Responsive Tunable In Situ Cross-Linkable Depot Injectable Hydrogels Based on Poly(N-Isopropylacrylamide)/Carboxymethyl Chitosan with Potential of Controlled Localized and Systemic Drug Delivery, AAPS Pharm. Sci. Tech., 20, 1-16, 2019.
  81. Potta T., Chun C., and Song S.C., Dual Cross-Linking Systems of Functionally Photo-Cross-Linkable and Thermoresponsive Polyphosphazene Hydrogels for Biomedical Applications, Biomacromolecules, 11, 1741-1753, 2010.
  82. Wong Po Foo C.T.S., Lee J.S., Mulyasasmita W., Parisi-Amon A., and Heilshorn S.C., Two-Component Protein-Engineered Physical Hydrogels for Cell Encapsulation, Proc. Natl. Acad. Sci., 106, 22067-22072, 2009.
  83. Miyata T., Asami N., and Uragami T., Structural Design of Stimuli-Responsive Bioconjugated Hydrogels that respond to a Target Antigen, J. Polym. Sci., Part B: Polym. Phys., 47, 2144-2157, 2009.
  84. Xing Y., Cheng E., Yang Y., Chen P., Zhang T., Sun Y., Yang Z., and Liu D., Self-Assembled DNA Hydrogels with Designable Thermal and Enzymatic Responsiveness, Adv. Mater., 23, 1117-1121, 2011.
  85. Salem A.K., Rose F.R.A.J., Oreffo R.O.C., Yang X., Davies M.C., Mitchell J.R., Roberts C.J., Stolnik-Trenkic S., Tendler S.J.B., Williams P.M., and Shakesheff K.M., Porous Polymer and Cell Composites that Self-Assemble In Situ, Adv. Mater., 15, 210-213, 2003.
  86. Wen H., Xiao W., Biswas S., Cong Z.Q., Liu X.M., Lam K.S., Liao Y.H., and Deng W., Alginate Hydrogel Modified with a Ligand Interacting with α3β1 Integrin Receptor Promotes the Differentiation of 3D Neural Spheroids toward Oligodendrocytes in Vitro, ACS Appl. Mater. Interfaces, 11, 5821-5833, 2019.
  87. Rajput K.N., Patel K.C., and Trivedi U.B., β-Cyclodextrin Production by Cyclodextrin Glucanotransferase from an Alkaliphile Microbacterium terrae KNR 9 Using Different Starch Substrates, Biotechnol. Res. Int., 2016, 1-7, 2016.
  88. Davis M.E. and Brewster M.E., Cyclodextrin-based Pharmaceutics: Past, Present and Future, Nat. Rev. Drug Discov., 3, 1023-1035, 2004.
  89. Li J., Self-assembled Supramolecular Hydrogels Based on Polymer-Cyclodextrin Inclusion Complexes for Drug Delivery, NPG Asia Mater., 2, 112-118, 2010.
  90. ehn J.M., Current Challenges on Large Supramolecular Assemblies, Springer, Netherlands, 51-66, 1999.
  91. van de Manakker F., van der Pot M., Vermonden T., van Nostrum C.F., and Hennink W.E., Self-Assembling Hydrogels Based on β-Cyclodextrin/Cholesterol Inclusion Complexes, Macromolecules, 41, 1766–1773, 2008.
  92. Lee J.W., Samal S., Selvapalam N., Kim H.J., and Kim K., Cucurbituril Homologues and Derivatives: New Opportunities in Supramolecular Chemistry, Acc. Chem. Res., 36, 621-630, 2003.
  93. Appel E.A., Biedermann F., Rauwald U., Jones S., Zayed J.M., and Scherman O.A., Supramolecular Cross-Linked Networks via Host-Guest Complexation with Cucurbit[8]uril, J. Am. Chem. Soc., 132, 14251-14260, 2010.
  94. Park K.M., Yang J.A., Jung H., Yeom J., Park J.S., Park K.H., Hoffman A.S., Hahn S.K., and Kim K., In Situ Supramolecular Assembly and Modular Modification of Hyaluronic Acid Hydrogels for 3D Cellular Engineering, ACS Nano, 6, 2960-2968, 2012.
  95. Lee S.J., Atala A., and Yoo J.J., In Situ Tissue Regeneration : Host Cell Recruitment and Biomaterial Design, Academic, 3-17, 2016.
  96. Kirouac D.C., Madlambayan G.J., Yu M., Sykes E. A. Ito C., and Zandstra P.W., Cell-Cell Interaction Networks Regulate Blood Stem and Progenitor Cell Fate, Mol. Syst. Biol., 5, 293-303, 2009.
  97. Alberts B., Johnson A., Lewis J., Raff M., Roberts K., and Walter P., Molecular Biology of the Cell, Garland Science, 4-26, 2002.
  98. Le Blanc K., Frassoni F., Ball L., Locatelli F., Roelofs H., Lewis I., Lanino E., Sundberg B., Bernardo M.E., Remberger M., Dini G., Egeler R.M., Bacigalupo A., Fibbe W., and Ringdén O., Mesenchymal Stem Cells for Treatment of Steroid-Resistant, Severe, Acute Graft-Versus-Host Disease: A Phase II Study, Lancet, 371, 1579-1586, 2008.
  99. Vosoughi S., Mahmoudreza Hojjati S., and Kasraian A., Preparation and Study on Properties Superabsorbent Hydrogel Composite of Acryl-amide-Acrylic Acid and Zeolite in Agricultural Uses, Iran. J. Polym. Sci. Technol. (Persian), 30, 391-404, 2018.
  100. Vernon B., Kim S.W., and Bae Y.H., Insulin Release from Islets of Langerhans Entrapped in a Poly(N-isopropylacrylamide-co-acrylic acid) Polymer Gel, J. Biomater. Sci. Polym. Ed., 10, 183-198, 1999.
  101. Gappa H., Baudyš M., Koh J.J., Kim S.W., and Bae Y.H., The Effect of Zinc-Crystallized Glucagon-Like Peptide-1 on Insulin Secretion of Macroencapsulated Pancreatic Islets, Tissue Eng., 7, 35-44, 2001.
  102. low E.F., Haas T.A., Zhang L., Loftus J., and Smith J.W., Ligand Binding to Integrins, J. Biol. Chem., 275, 21785-21788, 2000.
  103. Phelps E.A., Headen D.M., Taylor W.R., Thulé P.M., and García A.J., Vasculogenic Bio-synthetic Hydrogel for Enhancement of Pancreatic Islet Engraftment and Function in Type 1 Diabetes, Biomaterials, 34, 4602-4611, 2013.
  104. Keshaw H., Forbes A., and Day R.M., Release of Angiogenic Growth Factors from Cells Encapsulated in Alginate Beads with Bioactive Glass, Biomaterials, 26, 4171-4179, 2005.
  105. Orive G., De Castro M., Kong H.J., Hernández R.M., Ponce S., Mooney D.J., and Pedraz J.L., Bioactive Cell-Hydrogel Microcapsules for Cell-Based Drug Delivery, J. Control. Release, 135, 203-210, 2009.
  106. Bikram M., Fouletier-Dilling C., Hipp J.A., Gannon F., Davis A.R., Olmsted-Davis E.A., and West J.L., Endochondral Bone Formation from Hydrogel Carriers Loaded with BMP2-transduced Cells, Ann. Biomed. Eng., 35, 796-807, 2007.
  107. Choi M., Choi J.W., Kim S., Nizamoglu S., Hahn S.K., and Yun S.H., Light-Guiding Hydrogels for Cell-Based Sensing and Optogenetic Synthesis In Vivo, Nat. Photonics, 7, 987-994, 2013.
  108. Luo Y. and Shoichet M.S., A photolabile Hydrogel for Guided Three-Dimensional Cell Growth and Migration, Nat. Mater., 3, 249-253, 2004.
  109. Oh H.J., Park E.J., Lee S.Y., Soh J.W., Kong I.S., Choi S.W., Ra J.C., Kang S.K., and Lee B.C., Comparison of Cell Proliferation and Epigenetic Modification of Gene Expression Patterns in Canine Foetal Fibroblasts and Adipose Tissue-Derived Mesenchymal Stem Cells, Cell Prolif., 45, 438-444, 2012.
  110. Wojciechowski A.B., Englund U., Lundberg C., and Warfvinge K., Survival and Long Distance Migration of Brain-Derived Precursor Cells Transplanted to Adult Rat Retina. Stem Cells, 22, 27-38, 2004.
  111. Badylak S.F. and Nerem R.M., Progress in Tissue Engineering and Regenerative Medicine, Proc. Natl. Acad. Sci. USA, 107, 3285-3286, 2010.
  112. Laflamme M.A. and Murry C.E., Heart Regeneration, Nature, 473, 326-335, 2011.
  113. Kim M., Lee J.Y., Jones C.N., Revzin A., and Tae G., Heparin-Based Hydrogel as a Matrix for Encapsulation and Cultivation of Primary Hepatocytes, Biomaterials, 31, 3596-3603, 2010.
  114. 114.Wu D.Q., Wang T., Lu B., Xu, X.D., Cheng S. X., Jiang X.J., Zhang X.Z., and Zhuo R.X., Fabrication of Supramolecular Hydrogels for Drug Delivery and Stem Cell Encapsulation, Langmuir, 24, 10306-10312, 2008.