کاربرد غشاهای لایه‌نازک پلی‌آمیدی دارای نانولوله‌های اصلاح‌شده منگنز اکسید برای حذف یون‌های سدیم و مس

نوع مقاله : پژوهشی

نویسندگان

1 بابل، دانشگاه صنعتی نوشیروانی، دانشکده مهندسی شیمی،صندوق پستی 484

2 اسکودای، جوهور، دانشگاه صنعتی مالزی، مرکز تحقیقاتی فناوری‌های‌ غشایی پیشرفته

چکیده

فرضیه: امروزه با توسعه صنایع مختلف و تخلیه فاضلاب‌های صنعتی، آلودگی محیط‌زیست و منابع آبی به‌طور گسترده رو به افزایش است. فناوری غشایی روشی پیشرفته و امیدوارکننده برای تصفیه آب و پساب است که از این میان فناوری نانوفیلترکردن به‌طور گسترده در زمینه تصفیه آب و نمک‌زدایی آب دریا به‌کار گرفته می‌شود.
روش‌ها: در این پژوهش، عملکرد غشاهای نانوفیلتری لایه‌نازک پلی‌آمیدی دارای نانولوله‌های منگنز اکسید و نانولوله‌های منگنز اکسید اصلاح‌شده بررسی‌ شده است. پس از سنتز آب‌گرمایی نانولوله، سطح داخلی آن‌ها با پلی‌دوپامین اصلاح‌شده و سپس عملکرد آن‌ها در غشاهای لایه‌نازک پلی‌آمیدی (از ‌نظر پس‌زنی یون‌های تک‌ظرفیتی و دوظرفیتی و شار عبوری) بررسی شد.
یافته‌ها: ساختار نانولوله‌های اصلاح‌نشده و اصلاح‌شده با آزمون‌های طیف‌سنجی زیرقرمز تبدیل فوریه (FTIR)، اندازه‌گیری سطح ویژه (BET) و پراش‌سنجی پرتو X (XRD) تعیین شد. همچنین، شکل‌شناسی و ساختار غشاهای لایه‌نازک با میکروسکوپی الکترونی پویشی ارزیابی و عملکرد غشاها با اندازه‌گیری شار عبوری، زاویه تماس و مقدار پس‌زنی یون‌های سدیم و مس بررسی شد. غشای دارای %10/0 وزنی نانولوله اصلاح‌شده حداکثر مقدار شار آب خالص عبوری (L/m2h 6/18) را با افزایشی معادل %60/21 در مقایسه با غشا پایه نشان داد. آب‌دوست‌کردن نانولوله‌ها و ایجاد حفره‌های کوچک در سطح لایه‌نازک غشاها به افزایش شار عبوری منجر شده است، ضمن اینکه مسیر اضافی برای عبور آب از درون نانولوله‌ها نیز وجود دارد. حداکثر پس‌زنی یون سدیم (%02/97) برای غشای دارای %2/0 وزنی نانولوله اصلاح‌شده را می‌توان به قرارگیری نانولوله‌ها روی یکدیگر و ممانعت فضایی بیشتر، کاهش قطر داخلی نانولوله‌ها با پوشش‌دهی و عبور آب از درون نانولوله‌ها نسبت داد.

کلیدواژه‌ها


عنوان مقاله [English]

Thin Film Polyamide Membranes Containing Modified Manganese Dioxide Nanotubes for Removal of Sodium and Copper Ions

نویسندگان [English]

  • Zeynab Fallahnejad 1
  • Gholamreza Bakeri 1
  • A.F. Ismail 2
1 Chemical Engineering Faculty, Babol Noshirvani University of Technology, P.O. Box 484, Babol Iran,
2 Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi, Malaysia, 81310 Skudai, Johor Darul Takzim, Malaysia
چکیده [English]

Hypothesis: Today, with the development of different indus tries and the disposal of untreated was tewaters, environmental pollution and pollution of water resources are increasing very rapidly. Membrane technology is an advanced and hopeful way to treat water and was tewater. Nanofiltration technology is widely used in water treatment and desalination of seawater.
Methods: The performance of thin film polyamide membranes containing unmodified and modified manganese dioxide nanotubes was inves tigated. After hydrothermal synthesis of manganese dioxide nanotubes, the inner surface of the nanotubes was modified with polydopamine, and then, their performance in thin film polyamide membranes (in terms of monovalent/divalent ions rejection and permeation flux) was inves tigated.
Findings: Unmodified and modified nanotubes were characterized by Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) and X-ray diffraction analysis (XRD). In addition, the morphology and s tructure of the thin film membranes were inves tigated by FESEM tes t and the performance of the membranes was s tudied in terms of permeation flux, contact angle and rejection of sodium and copper ions. The maximum pure water flux, 18.6 L/m2h, was obtained for the membrane containing 0.10 %wt modified nanotube; an increase of 21.88% compared to the neat membrane. Creation of tiny pores on the surface of the membranes through hydrophilic nanotubes resulted in higher flux while there are extra routes through the nanotubes for water permeation. The maximum rejection of sodium ion (97.02%) for the membrane containing 0.2 %wt modified nanotubes could be related to the s tacking of the nanotubes and more spatial hindrance, reduction in the diameter of the nanotube due to the coating and permeation of water through the nanotubes.

کلیدواژه‌ها [English]

  • Thin film membrane
  • permeation flux
  • manganese dioxide
  • nanotube
  • water treatment
  • desalination
  1. Ahmed F.E., Lalia B.S., and Hashaikeh R., A Review on Electrospinning for Membrane Fabrication: Challenges and Applications, Desalination, 356, 15-30, 2015.
  2. Li W., Zhang Y., Li Q., and Zhang G., Metal-Organic Framework Composite Membranes: Synthesis and Separation Applications, Chem. Eng. Sci., 135, 232-257, 2015.
  3. Ali A., Aamir M., Thebo K.H., and Akhtar J., Laminar Graphene Oxide Membranes Towards Selective Ionic and Molecular Separations: Challenges and Progress, Chem. Rec., 20, 344-354, 2020.
  4. Zhao Q., Zhao D.L., and Chung T.S., Nanoclays-Incorporated Thin-Film Nanocomposite Membranes for Reverse Osmosis Desalination, Ad. Mater. Interfaces, 7, 1902108, 2020.
  5. Bi R., Zhang Q., Zhang R., Su Y., and Jiang Z., Thin Film Nanocomposite Membranes Incorporated with Graphene Quantum Dots for High Flux and Antifouling Property, J. Membr. Sci., 553, 17-24, 2018.
  6. Xu R., Ding L., Chen D. Liu T., Wu Y., Cao Y., Chen J., Yang F., Kang J., and Xiang M., Enhancing the Chlorine Stability and Anti-Fouling Properties of Thin-Film Composite (TFC) Reverse Osmosis (RO) Membrane via Surface Grafting L-Arginine (Arg) Functionalized Polyvinyl Alcohol (PVA), Ind. Eng. Chem. Res., 59, 10882-10893, 2020.
  7. Xu L., Shan B., Gao C., and Xu J., Multifunctional Thin-Film Nanocomposite Membranes Comprising Covalent Organic Nanosheets with High Crystallinity for Efficient Reverse Osmosis Desalination, J. Membr. Sci., 593, 117398, 2020.
  8. Rehman F., Thebo K.H., Aamir M., and Akhtar J., Nanomembranes for Water Treatment, Amrane A., Rajendran S., Nguyen T.A., Assadi A.A., and Sharoba A.M. (Eds.), Nanotechnology in the Beverage Industry, Elsevier, 207-240, 2020.
  9. Nu D.T.T., Duyen N.T.M., Linh N.T.T., Van Hoang C., and Hung N.P., Preparation and Characterization of Nano δ-MnO2-Blended Cellulose Acetate Membrane, Vietnam J. Chem., 57, 741-746, 2019.
  10. Fallahnejad Z., Bakeri Jafarkolaei Gh., and Fauzi Ismail A., Improvement in Polyamide Thin Film Nanofiltration Membrane Performance with Modified Titanium Oxide Nanotubes, Iran. J. Polym. Sci.Technol. (Persian), 33, 294-307, 2020.
  11. Umek P., Gloter A., Pregelj M., Dominko R., Jagodič M., Jagličić Z., Zimina A., Brzhezinskaya M., Potočnik A., Filipič C., Levstik A., and Arčon D., Synthesis of 3D Hierarchical Self-Assembled Microstructures Formed from α-MnO2 Nanotubes and Their Conducting and Magnetic Properties, J. Phys. Chem. C, 113, 14798-14803, 2009.
  12. Luo J., Zhu H.T., Fan H.M., Liang J.K., Shi H.L., Rao G.H., Li J.B., Du Z.M., and Shen Z.X., Synthesis of Single-Crystal Tetragonal α-MnO2 Nanotubes, J. Phys. Chem. C, 112, 12594-12598, 2008.
  13. Lee H.A., Park E., and Lee H., Polydopamine and Its Derivative Surface Chemistry in Material Science: A Focused Review for Studies at KAIST, Adv. Mater., 1907505, 2020,
  14. Ouyang B.G.J., Fu L., Yang H., Hu Y., Tang A., Long H., Jin Y., Chen J., and Jiang J., Radical Guided Selective Loading of Silver Nanoparticles at Interior Lumen and out Surface of Halloysite Nanotubes, Mater. Des., 110, 169-178, 2016.
  15. Chalkidis A., Jampaiah D., Hartley P.G., Sabri Y.M., and Bhargava S.K., Regenerable α-MnO2 Nanotubes for Elemental Mercury Removal from Natural Gas, Fuel Processing Technology, 193, 317-327, 2019.
  16. Rahimpour A., Seyedpour S.F., Aghapour Aktij S., Dadashi Firouzjaei M., Zirehpour A., Arabi Shamsabadi A., Khoshhal Salestan S., Jabbari M., and Soroush M., Simultaneous Improvement of Antimicrobial, Antifouling, and Transport Properties of Forward Osmosis Membranes with Immobilized Highly-Compatible Polyrhodanine Nanoparticles, Environ. Sci. Technol., 52, 5246-5258, 2018.
  17. Ambroz F., Macdonald T.J., Martis V., and Parkin I.P., Evaluation of the BET Theory for the Characterization of Meso and Microporous MOFs, Small Methods, 2, 1800173, 2018.
  18. Schoonheydt R.A., Characterization of Solid Materials and Heterogeneous Catalysts. From Structure to Surface Reactivity. Edited by Michel Che and Jacques C. Védrine, Angew. Chem. Int. Ed., 51,11938-11939, 2012.
  19. Thomas J.M. and Thomas W.J., Principles and Practice of Heterogeneous Catalysis, 2nd ed., 2015.
  20. Chen L., Zhang M., Yang X., Li W., Zheng J., Gan W., and Xu J., Sandwich-structured MnO2@N-doped Carbon@MnO2 Nanotubes for High-Performance Supercapacitors, J. Alloy. Compd., 695, 3339-3347, 2017.
  21. Chen Y., Chen L., Li P., Xu Y., Fan M., Zhu S., and Shen S., Enhanced Performance of Microbial Fuel Cells by Using MnO2/Halloysite Nanotubes to Modify Carbon Cloth Anodes, Energy, 109, 620-628, 2016.
  22. Li L., Pan Y., Chen L., and Li G., One-dimensional α-MnO2: Trapping Chemistry of Tunnel Structures, Structural Stability, and Magnetic Transitions, J. Solid State Chem., 18, 2896-2904, 2007.
  23. Acter S., Vidallon M.L.P., Crawford S., Tabor R.F., and Teo B.M., Efficient Cellular Internalization and Transport of Bowl-shaped Polydopamine Particles, Particle and Particle Systems Characterization, Part. Part. Sys‌t., charact. 37, 2000166, 2020.
  24. Yu X., Fan H., Liu Y., Shi Z., and Jin Z., Characterization of Carbonized Polydopamine Nanoparticles Suggests Ordered Supramolecular Structure of Polydopamine, Langmuir, 30, 5497-5505, 2014.
  25. Li Y., Zhao R., Chao S., Sun B., Wang C., and Li X., Polydopamine Coating Assisted synthesis of MnO2 Loaded Inorganic/Organic Composite Electrospun Fiber Adsorbent for Efficient Removal of Pb2+ from Water, Chem. Eng. J., 344, 277-289, 2018.
  26. Al Aani S., Haroutounian A., Wright C.J., and Hilal N., Thin Film Nanocomposite (TFN) Membranes Modified with Polydopamine Coated Metals/Carbon-Nanostructures for Desalination Applications, Desalination, 427, 60-74, 2018.
  27. Foggia M., Taddei P., Torreggiani A., Dettin M., and Tinti A., Self-assembling Peptides for Biomedical Applications: IR and Raman Spectroscopies for the Study of Secondary Structure, Proteome. Res. J., 2, 231-272, 2012.
  28. Cao X., Liu H., Yang X., Tian J., Luo B., and Liu M., Halloysite Nanotubes@Polydopamine Reinforced Polyacrylamide-Gelatin Hydrogels with NIR Light Triggered Shape Memory and Self-Healing Capability, Compos. Sci. Technol., 191, 108071, 2020.
  29. Jiao Y., Han D., Lu Y., Rong Y., Fang L., Liu Y., and Han R., Characterization of Pine-Sawdust Pyrolytic Char Activated by Phosphoric Acid Through Microwave Irradiation and Adsorption Property Toward CDNB in Batch Mode, Desalination Water Treat., 77, 247-255, 2017.
  30. Farahani M., Abdullah S.R.S., Hosseini S., Shojaeipour S., and Kashisaz M., Adsorption-based Cationic Dyes Using the Carbon Active Sugarcane Bagasse, Procedia Environ. Sci., 10, 203-208, 2011.
  31. Ahmed K.A.M., Exploitation of KMnO4 Material as Precursors for the Fabrication of Manganese Oxide Nanomaterials, J. Taibah Uni. Sci., 10, 412-429. 2016.
  32. Amini M., Seifi M., Akbari A., and Hosseinifard M., Polyamide-zinc Oxide-Based Thin Film Nanocomposite Membranes: Towards Improved Performance for Forward Osmosis, Polyhedron, 179, 114362, 2020.
  33. Tang C.Y., Fu Q.S., Criddle C.S., and Leckie J.O., Effect of Flux (Transmembrane Pressure) and Membrane Properties on Fouling and Rejection of Reverse Osmosis and Nanofiltration Membranes Treating Perfluorooctane Sulfonate Containing Wastewater, Environ. Sci. Technol., 41, 2008-2014, 2007.
  34. Chiao Y.H., Sengupta A., Chen S.T., Hung W.S., Lai J.Y., Upadhyaya L., Qian X., and Wickramasinghe S.R., Novel Thin-Film Composite Forward Osmosis Membrane Using Polyethylenimine and Its Impact on Membrane Performance, Sep. Sci. Technol., 55, 590-600, 2020.
  35. Gohain M.B., Pawar R.R., Karki S., Hazarika A., Hazarika S., and Ingole P.G., Development of Thin Film Nanocomposite Membrane Incorporated with Mesoporous Synthetic Hectorite and MSH@UiO-66-NH2 Nanoparticles for Efficient Targeted Feeds Separation, and Antibacterial Performance, J. Membr. Sci., 609, 118-212, 2020.
  36. Liu Y., Wang X., Gao X., Zheng J., Wang J., Volodin A., Xie Y.F., Huang X., Van der Bruggen B., and Zhu J., High-Performance Thin Film Nanocomposite Membranes Enabled by Nanomaterials with Different Dimensions for Nanofiltration, J. Membr. Sci., 596, 117717, 2020.
  37. Liu Y., Wang X., Gao X., Zheng J., Wang J., Volodin A., Xie Y.F., Huang X., Van der Bruggen B., and Zhu J., High-Performance Thin Film Nanocomposite Membranes Enabled by Nanomaterials with Different Dimensions for Nanofiltration, J. Membr. Sci., 596, 117717, 2020.
  38. Hamid M.F., Abdullah N., Yusof N., Ismail N.M., Ismail, A.F., Salleh W.N.W., Jaafar J., Aziz F., and Lau W.J., Effects of Surface Charge of Thin-Film Composite Membrane on Copper (II) Ion Removal by Using Nanofiltration and Forward Osmosis Process, J. Water Process. Eng., 33, 101032, 2020.
  39. Liu Y.L., Zhao Y.Y., Wang X.M., Wen X.H., Huang X., and Xie Y.F., Effect of Varying Piperazine Concentration and Post-modification on Prepared Nanofiltration Membranes in Selectively Rejecting Organic Micropollutants and Salts, J. Membr. Sci., 582, 274-283, 2019.
  40. Gholami S., López J., Rezvani A., Vatanpour V., and Cortina J.L., Fabrication of Thin-Film Nanocomposite Nanofiltration Membranes Incorporated with Aromatic Amine-Functionalized Multiwalled Carbon Nanotubes. Rejection Performance of Inorganic Pollutants from Groundwater with Improved Acid and Chlorine Resistance, Chem. Eng. J., 384, 123348, 2020.
  41. Bandehali S., Parvizian F., Moghadassi A.R., Hosseini S.M., and Shen J.N., Fabrication of Thin Film-PEI Nanofiltration Membrane with Promoted Separation Performances: Cr, Pb and Cu Ions Removal from Water, J. Polym. Res., 27, 94, 2020.
  42. Zhou H., Chua M.H., and Xu J., Functionalized POSS-Based Hybrid Composites, Pielichowski K. and Majka, T.M. (Eds.), Polymer Composites with Functionalized Nanoparticles, Elsevier, 179-210, 2019.
  43. Zarrabi H., Yekavalangi M.E., Vatanpour V., Shockravi A., and Safarpour M., Improvement in Desalination Performance of Thin Film Nanocomposite Nanofiltration Membrane Using Amine-Functionalized Multiwalled Carbon Nanotube, Desalination, 394, 83-90, 2016.
  44. Gogoi M., Goswami R., Ingole P.G., and Hazarika S., Selective Permeation of L-tyrosine through Functionalized Single-walled Carbon Nanotube Thin Film Nanocomposite Membrane, Sep. Purif. Technol., 233, 116061, 2020.
  45. Moradi G., Zinadini S., Rajabi L., and Ashraf Derakhshan A., Removal of Heavy Metal Ions Using a New High Performance Nanofiltration Membrane Modified with Curcumin Boehmite Nanoparticles, Chem. Eng. J., 390, 124546, 2020.
  46. Yang W., Xu H., Chen W., Shen Z., Ding M., Lin T., Tao H., Kong Q., Yang G., and Xie Z., A Polyamide Membrane with Tubular Crumples Incorporating Carboxylated Single-walled Carbon Nanotubes for High Water Flux, Desalination, 479, 114330. 2020.
  47. María Arsuaga J., Sotto A., del Rosario G., Martínez A., Molina S., Teli S.B., and de Abajo J., Influence of the Type, Size, and Distribution of Metal Oxide Particles on the Properties of Nanocomposite Ultrafiltration Membranes, J. Membr. Sci., 428, 131-141. 2013.
  48. Li H., Shi W., Zhang H., Zhou R., and Qin X., Preparation of Internally Pressurized Polyamide Thin-Film Composite Hollow Fiber Nanofiltration Membrane with High Ions Selectivity by a Facile Coating Method, Prog.Org. Coat., 139, 105456, 2020.
  49. Jun B.-M., Cho J., Jang A., Chon K., Westerhoff P., Yoon Y., and Rho H., Charge Characteristics (Surface Charge vs. Zeta Potential) of Membrane Surfaces to Assess the Salt Rejection Behavior of Nanofiltration Membranes, Sep. Purif. Technol., 247, 117026, 2020.
  50. Zhao X., Ma J., Wang Z., Wen G., Jiang J., Shi F., and Sheng L., Hyperbranched-Polymer Functionalized Multi-walled Carbon Nanotubes for Poly(vinylidene fluoride) Membranes: From dispersion to Blended Fouling-Control Membrane, Desalination, 303, 29-38, 2012.
  51. Peydayesh M., Mohammadi T., and Nikouzad S.K., A Positively Charged Composite Loose Nanofiltration Membrane for Water Purification from Heavy Metals, J. Membr. Sci., 611, 118205, 2020.
  52. Saeedi-Jurkuyeh A., Jafari A.J., Kalantary R.R., and Esrafili A., A Novel Synthetic Thin-Film Nanocomposite Forward Osmosis Membrane Modified by Graphene Oxide and Polyethylene Glycol for Heavy Metals Removal from Aqueous Solutions, React. Funct. Polym., 146, 04397, 2020.
  53. Mu T., Zhang H.Z., Sun J.Y., and Xu Z.L., Three-Channel Capillary Nanofiltration Membrane with Quaternary Ammonium Incorporated for Efficient Heavy Metals Removal, Sep. Purif. Technol., 248, 117133, 2020.
  54. Hu R., He Y., Zhang C., Zhang R., Li J., and Zhu H., Graphene Oxide-Embedded Polyamide Nanofiltration Membranes for Selective Ion Separation, J. Mater. Chem., 5, 25632-25640, 2017.
  55. Wu H., Tang B., and Wu P., MWNTs/Polyester Thin Film Nanocomposite Membrane: An Approach to Overcome the Trade-Off Effect between Permeability and Selectivity, J. Phys. Chem. C, 11, 16395-16400, 2010.
  56. Yang Q., Su Y., Chi C., Cherian C.T., Huang K., Kravets V.G., Wang F.C., Zhang J.C., Pratt A., Grigorenko A.N., Guinea F., Geim A.K., and Nair R.R., Ultrathin Graphene-based Membrane with Precise Molecular Sieving and Ultrafast Solvent Permeation, Nat Mater, 16, 1198-1202, 2017.
  57. Paseta L., Luque-Alled J.M., Malankowska M., Navarro M., Gorgojo P., Coronas J., and Téllez C., Functionalized Graphene-Based Polyamide Thin Film Nanocomposite Membranes for Organic Solvent Nanofiltration, Sep. Purif. Technol., 247, 116995. 2020.
  58. Echaide-Górriz C., Sorribas S., Téllez C., and Coronas J., MOF Nanoparticles of MIL-68(Al), MIL-101(Cr) and ZIF-11 for Thin Film Nanocomposite Organic Solvent Nanofiltration Membranes, RSC Adv., 6, 90417-90426, 2016.
  59. Marafatto F.F., Lanson B., and Peña J., Crystal Growth and Aggregation in Suspensions of δ-MnO2 Nanoparticles: Implications for Surface Reactivity, Environ.Sci. Nano, 5, 497-508, 2018.
  60. Lanson B., Drits V.A., Silvester E., and Manceau A., Structure of H-Exchanged Hexagonal Birnessite and Its Mechanism of Formation from Na-Rich Monoclinic Buserite at Low pH, Am. Mineral., 85, 826-838, 2000.
  61. Seyyed Shahabi S., Azizi N., Vatanpour V., and Yousefimehr N., Novel Functionalized Graphitic Carbon Nitride Incorporated Thin Film Nanocomposite Membranes for High-Performance Reverse Osmosis Desalination, Sep. Purif. Technol., 235, 116134, 2020.
  62. Nambikkattu J., Kaleekkal N.J., and Jacob J.P., Metal Ferrite Incorporated Polysulfone Thin-Film Nanocomposite Membranes for Wastewater Treatment, Environ. Sci. Pollut. Res., 28, 1915-1927, 2021.
  63. Ormanci-Acar T., Celebi F., Keskin B., Mutlu-Salmanlı O., Agtas M., Turken T., Tufani A., Imer D.Y., Ince G.O., Demir T.U., Menceloglu Y.Z., Unal S., and Koyuncu I., Fabrication and Characterization of Temperature and pH Resistant Thin Film Nanocomposite Membranes Embedded with Halloysite Nanotubes for Dye Rejection, Desalination, 429, 20-32, 2018.
  64. Zeng G., He Y., Zhan Y., Zhang L., Pan Y., Zhang C., and Yu Z., Novel Polyvinylidene Fluoride Nanofiltration Membrane Blended with Functionalized Halloysite Nanotubes for Dye and Heavy Metal Ions Removal, J. Hazard. Mater., 317, 60-72, 2016.
  65. Zhu J., Guo N., Zhang Y., Yu L., and Liu J., Preparation and Characterization of Negatively Charged PES Nanofiltration Membrane by Blending with Halloysite Nanotubes Grafted with Poly(sodium 4-styrenesulfonate) via Surface-Initiated ATRP, J. Membr. Sci., 465, 91-99, 2014.
  66. Jia L., Zhang X., Zhu J., Cong S., Wang J., Liu J., and Zhang Y., Polyvinyl Alcohol-Assisted High-Flux Thin Film Nanocomposite Membranes Incorporated with Halloysite Nanotubes for Nanofiltration, Environ. Sci. Water Res. Technol., 5, 1412-1422, 2019.