کوپلیمرهای اولفینی حلقوی : جایگزینی مشخصه‌های نوری شیشه با پلاستیک در تجهیزات پزشکی

نوع مقاله : مروری

نویسندگان

1 تهران ، پژوهشگاه پلیمر و پتروشیمی، پژوهشکده علوم ، گروه پلیمرهای زیست‌سازگار صندوق پستی 112-14975

2 تهران ، پژوهشگاه پلیمر و پتروشیمی، پژوهشکده مهندسی، گروه کاتالیست، صندوق پستی 112-14975

چکیده

کوپلیمرهای اولفینی حلقوی دسته مهمی از پلی‌اولفین‌ها با خواص منحصربه‌فرد هستند که خواص مکانیکی آن‌ها بسته به محتوای مونومر نوربورنن درکوپلیمرهای نهایی تولیدشده متغیر است و بدین‌ ترتیب طیفی از مواد نرم تا سخت تولید می‌شود. در کوپلیمرهای تجاری معمول، محتوای نوربورنن بیشتر از 20 درصد مولی است که به‌طور تصادفی در ریزساختار کوپلیمر توزیع شده و به پلیمرهای نهایی ساختار بی‌شکل و شفاف نوری می‌دهد. افزایش محتوای نوربورنن مترادف با افزایش دمای گذار شیشه‌ای در کوپلیمر نهایی نیز است. خواص نوری جالب توجه این دسته مواد تابع ساختار بی‌شکل آن‌هاست و محدود به دامنه طول موج نور مرئی نیست. این کوپلیمرها در ناحیه طول موج فرابنفش نیز بسیار شفاف و برای تولید محصولاتی با الزامات نوری مناسب هستند. این کوپلیمرها مقاومت شیمیایی بسیار زیادی در برابر حلال‌های قطبی دارند که با سایر پلیمرهایی رقابت‌پذیر هستند که در ساخت قطعات آزمایشگاهی کاربرد دارند. از سوی دیگر، این مواد با سامانه‌های زیستی وارد واکنش نمی‌شوند، بنابراین برای کاربردهای مرتبط با بسته‌بندی‌‌های دارویی مانند سرنگ‌های از پیش پرشده مناسب هستند. از آنجا که آب اصلی‌ترین حلال پایه در تولید فرآورده‌های تزریقی است، جذب کم آب به‌وسیله این کوپلیمرها سبب می‌شود تا از پایداری ابعادی محصول در شرایط محیطی اطمینان حاصل شود، در حدی که جذب آب این مواد (حتی در محیط‌هایی با رطوبت بسیار زیاد) چهار برابر کمتر از پلی‌کربنات و ده برابر کمتر از پلیمرهایی مانند پلی‌(متیل‌متاکریلات) است. در این مقاله پس از معرفی اجمالی محصولات کوپلیمرهای اولفینی حلقوی روش‌های سنتز این پلیمرها با کاتالیزورهای مختلف مطالعه شده، سپس ویژگی‌های این ترکیبات از لحاظ نوری، مکانیکی و گرمایی بیان می‌شود.  در نهایت، روش‌های فراوری کوپلیمرهای اولفینی حلقوی و کاربردهای این ترکیبات بررسی شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Cyclic Olefin Copolymers: Superseding Glass Optical Characteristics with Plastics in Medical Devices

نویسندگان [English]

  • Maryam Babaei 1
  • Mohammad Imani 1
  • saeid Ahmadjo 2
1 Iran Polymer and Petrochemical Institute, P.O. Box: 14975-112, Tehran, Iran
2 Iran Polymer and Petrochemical Institute, P.O. Box: 14975-112, Tehran, Iran
چکیده [English]

 cyclic olefinic copolymers (COC) include an important class of polyolefins with special properties as soft or hard materials, depending on the content of norbornene monomer in the final copolymer composition. In common commercial copolymers, the amount of norbornene is more than 20% (by mol) which is randomly distributed in the microstructure of the copolymer and gives the final polymers an amorphous and optically transparent structure. An increase in norbornene content in the copolymer structure leads to a corresponding increase in the glass transition temperature (Tg) of the final copolymer. The remarkable optical properties of this type of COC strongly depend on their amorphous structure, which is not limited to the visible light wavelength range, so COCs can be used as transparent polymers in ultraviolet and vislible wavelengths to achieve suitable optically clear products. Due to their higher resistance to chemicals especially polar solvents COCs are used for producing laboratory equipment in a competitive manner with other polymers. On the other hand, COCs are inert biological materials, making them suitable candidates for packaging applications for medicines, including pre-filled syringes. Water is the main solvent used to produce the injectable products, so low water absorption by these copolymers ensures dimensional stability of the final product under ambient conditions. In a highly humid environment, water absorption capacity for COCs is limited to 4 and 10 times less than that of polycarbonate and polymethyl methacrylate polymers, respectively. In this study, after a brief introduction to COCs the polymerization methods by different catalysts are discussed, and the optical mechanical and thermal characteristics of these copolymers are discussed. Finally, the details of COC processing and its applications are mentioned

کلیدواژه‌ها [English]

  • Cyclic Olefin Copolymer (COC)
  • Norbornene
  • Optical polymers
  • Ethylene–Norbornene Copolymers (ENC)
  • Prefilled syringe
  1. Trombley K.F., Cyclic Olefin Copolymer: An Alternative Plastic Film for Pharmaceutical Blister Packages, MSc Degree Thesis, Department of Packaging Science College of Applied Science and Technology, Rochester Institute of Technology Rochester, New York, 2001.
  2. Mlejnek P., Cycloolefin Copolymers: Processing, Properties Application, Bachelor Thesis, TBU in Zlin, Faculty of Technology, 2007.
  3. Jongsomjit B., Behaviours of Ethylene/Norbornene Copolymerization with Zirconocene Catalysts, Polym. J., 14, 559-564, 2005.
  4. Forsyth J.F., Thermal and Dynamic Mechanical Behavior of Ethylene/Norbornene Copolymers with Medium Norbornene Contents, Appl. Polym. Sci., 82, 2159-2165, 2001.
  5. Shakeri E., Mortazavi M.M, Ahmadjo S., and Zohuri G.H., Comparison of Mono and Dinuclear α–Iimine Ni-Based Catalysts for Synthesis of Polynorbornene and Its Microstructure Study, Macromol. Sci., Part A, 57, 837-843, 2020.
  6. Shakeri E., Mortazavi M.M, Ahmadjo S., and Zohuri G.H., Synthesis and Gas Permeation of Polynorbornene by Dinuclear α-Diimine Ni-Based Catalysts: Experimental and Quantum Chemistry Modeling, Polym. Res., 29, 201-210, 2022.
  7. Mansouri S., Omidvar M., Mortazavi S.M.M., and Ahmadjo S., 5-Ethylidene-2-norbornene Polymerization by Alpha-Diimine Nickel Catalyst: A Revealing Insight into the Pivotal Function of Binuclear and Mononuclear Catalyst Structure in Tailoring Polymer Architecture, React. Eng., 16, 2100052, 2022.
  8. Mansouri S., Omidvar M., Soleimannezhad A., Shakeri E., Mortazavi S.M.M., and Ahmadjo S., Copolymerization of Cyclic Monomers by Nickel α-Diimine Catalysts: Catalyst Structure, Polymer Characterization, Polym. Res., 29, 409-420, 2022.
  9. Soleimannezhd A., Mortazavi M.M., Ahmadjo S., Mansouri S., and Rashedi R., Study on Polymerization Conditions in Homo and Copolymer Syntheses of Norbornene/1-Hexene with Nickel-Based Late Transition Metal Catalyst, Polym. J., 31, 237-245 2022.
  10. Dougnac V.N., Peoples B.C., Rabagliati F.M., Galland G.B., and Quijada R., Study on the Copolymerization of Propylene with Norbornene Using Metallocene Catalysts, Bull., 69, 925-935, 2012.
  11. Boggioni L. and Tritto I., State of the Art of Cyclic Olefin Polymers, MRS Bull., 38, 245-251, 2013.
  12. Sastri V.R., Plastics in Medical Devices. Properties, Requirements and Applications, William Andrew, USA, 2010.
  13. O’Neil C.E., Taylor S., Ratnayake M., Pullagurla S., Singh V., and Soper S.A., Characterization of Activated Cyclic Olefin Copolymer: Influence of the Ethylene/Norbornene Content on the Physiochemical Properties, Analyst, 141, 1-30, 2016.
  14. Hou Y., Ma R., Gao J., and Bao F., Recent Progress in the Vinylic Polymerization and Copolymerization of Norbornene Catalyzed by Transition Metal Catalysts, Mocromol. Sci., Part C: Polym. Rev., 49, 249-287, 2009.
  15. Nunes P.S., Ohlsson P.D., Ordeig O., and Kutter J.P., Cyclic Olefin Polymers: Emerging Materials for Lab-on-a-Chip Applications, Nanofluidics, 9, 145-161, 2010
  16. Lamonte R.R. and McNally D., Cyclic Olefin Copolymers, Mat. Proce., 159, 33-36, 2001.
  17. Shin J.Y., Park J.Y., Liu C., He J., and Kim S.C., Chemical Structure and Physical Properties of Cyclic Olefin Copolymers, Pure Appl. Chem., 77, 801-814, 2005.
  18. TOPAS Advanced Polymers, Data Sheet for Injection Molding Grade for Optical Applications, TOPAS® 5013S-04, http://www.topas.com, Available in June 17, 2014.
  19. Experts by IHS Markit, https://experts.ihsmarkit.com, Available in February 23, 2023.
  20. Truett W.L., Johnson D.R., Robinson I.M., and Montague B.A., Polynorbornene by Coordination Polymerization, Am. Chem. Soc., 82, 2337-2340, 1960.
  21. Jamjah R., Zohuri G.H., Masnadi M., Ahmadjo S., and Nekoomanesh M., Syndiotactic Polymerization of Styrene: Study of Catalyst Components and Polymerization Conditions, Appl. Polym.  Sci., 101, 2216-2221, 2006.
  22. Masnadi M., Jamjah R., Ahmadjo S., and Nekoomanesh M., Synthesis and Characterization of Cyclopentadienyl Titanium Trichloride and Indenyl Titanium Trichloride, Monocyclic Titanium Trihalide Complexes,  React. Inorg. Met. Org. Nan. Met. Chem., 36, 543-547, 2006.
  23. Mortazavi M.M., Arabi H., Zohuri G.H., Ahmadjo S., Nekoomanesh M., and Ahmadi M., Ethylene Homo- and Copolymerization Using a Bis-IndZrCl2 Metallocene Catalyst: Structural Composition Distribution of the Copolymer, React. Eng., 3, 263-270, 2009.
  24. Mortazavi M.M., Arabi H., Zohuri G.H., Ahmadjo S., Nekoomanesh M., and Ahmadi M., Copolymerization of Ethylene/α-Olefins Using Bis(2-phenylindenyl)Zirconium Dichloride Metallocene Catalyst: Structural Study of Comonomer Distribution, Int., 59, 1258-1265, 2010.
  25. Ahmadjo S., Arabi H., Nekoomanesh M., Zohuri G.H., Mortazavi M.M., and Naderi G., Terpolymerization of Ethylene/Propylene/Diene Monomers Using (2-PhInd)2ZrCl2 Metallocene Catalysts, React. Eng., 4, 707-714, 2010.
  26. Ahmadjo S., Arabi H., Nekoomanesh M., Zohuri G.H., and Mortazavi M.M., Synthesis of (Ind)2ZrCl2 Catalyst for Copolymerization of Ethylene and Propylene: Parameters Effect on Productivity, J. Polym. Sci. Techol. (Persian), 23, 379-386, 2011.
  27. Ahmadjo S., Arabi H., Nekoomanesh M., Mortazavi M.M., Zohuri G.H., Ahmadi S., and Bolandi S., Indirect Synthesis of Bis(2-PhInd)ZrCl2 Metallocene Catalyst, Kinetic Study and Modeling of Ethylene Polymerization, Eng. Technol., 34, 249-256, 2011
  28. Mortazavi M.M., Arabi H., Zohuri G.H., Ahmadjo S., and Nekoomanesh M., Comparative Study of Copolymerization and Terpolymerization of Ethylene/Propylene/Diene Using Metallocene Catalyst, Appl. Polym. Sci., 122, 1838-1846, 2011.
  29. Mahdavi H., Badiei A., Zohuri G.H., Rezaee A., Jamjah R., and Ahmadjo S., Homogeneous Polymerization of Ethylene Using an Iron-Based Metal Catalyst System, Appl. Polym. Sci., 103, 1517-1522, 2007.
  30. Zohuri G.H., Damavandi S., Dianat E., Sandaroos R., and Ahmadjo S., Late Tansition Metal Catalyst Based on Cobalt for Polymerization of Ethylene, J. Polym. Mat., 60, 776-786, 2011.
  31. Arabi H., Ghafari M., Zohuri G.H., Damavandi S., and Ahmadjo S., Polymerization of Ethylene Using α-Diimine Nickel Catalyst, J. Polym.  Sci. Techol. (Persian), 26, 327-335, 2013.
  32. Damavandi S., Zohuri G.H., Sandaroos R., and Ahmadjo S., Novel Functionalized Bis(imino)Pyridine Cobalt(II), Polym. Res., 19, 9796-9800, 2012.
  33. Damavandi S., Sandaroos R., Zohuri G.H., and Ahmadjo S., A Novel Multicomponent Zr-Catalyzed Synthesis of Functionalized Pyrano[3,2-b]Pyrrole Derivatives, Chem. Int., 40, 307-315, 2014.
  34. Shamekhi M.A., Damavandi S., Zohuri G.H., Ahmadjo S., and Sandaroos R., Synthesis of High Molecular Weight Polyethylene Using FI Catalyst, Polyolefins J., 1, 25-32, 2014.
  35. Avar S., Mortazavi S.M.M., Ahmadjo S., and Zohuri G.H., α-Diimine Nickel Catalyst for Copolymerization of Hexene and Acrylate Monomers Activated by Different Cocatalysts, Organomet. Chem., 32, 4238, 2018.
  36. Vougioukalakis G.C, Stamatopoulos I., Petzetakis N., Raptopoulou C.P., Psycharis V., and Terzis A., Controlled Vinyl-Type Polymerization of Norbornene with a Nickel(II) Diphosphinoamine Methylaluminoxane Catalytic System, Polym. Sci., 47, 5241-5250, 2009.
  37. Hong M., Cui L., Liu S., and Li Y., Synthesis of Novel Cyclic Olefin Copolymer (COC) with High Performance via Effective Copolymerization of Ethylene with Bulky Cyclic Olefin, Macromolecules, 45, 5397-5402, 2012.
  38. Hasan T., Ikeda T., and Shiono T., Homo- and Copolymerization of Norbornene Derivatives with Ethene by Ansa-Fluorenylamidodimethyltitanium Activated with Methylaluminoxane, Polym. Sci., 45, 4581-4587, 2007.
  39. Liu Y., Ouyang M., He X., Chen Y., and Wang K., Novel Ni and Pd(benzocyclohexan-ketonaphthylimino) Complexes for Copolymerization of Norbornene, Appl. Polym. Sci., 128, 216-223, 2013.
  40. Feng Q., Chen D., Feng D., Jiao L., Peng Z., and Pei L., Vinyl Polymerizations of Norbornene Catalyzed by Nickel Complexes with Acetoacetamide Ligands, Organomet. Chem., 28, 32-37, 2014.
  41. Huo P., Liu W., He X., and Mei G., Vinylic Copolymerization of Norbornene and Higher 1-Alkene with Three-Dimensional Geometry Binickel Catalyst, Polym. Res., 22, 194, 2015.
  42. Zeng Y., Mahmod Q., Zhang Q., Liang T., and Sun W.H., Vinyl Homo/Copolymerization of Norbornene and Ethylene Using Sterically Enhanced 1,2-Bis(arylimino)Acenaphthene–Palladium Precatalysts, Polym. Sci., 56, 922-930, 2018.
  43. Das S., Subramaniyan V., and Mani G., Nickel(II) and Palladium(II) Complexes Bearing an Unsymmetrical Pyrrole-Based PNN Pincer and Their Norbornene Polymerization Behaviors versus the Symmetrical NNN and PNP Pincers, Chem., 58, 3444-3456, 2019.
  44. Harakawa H., Okabea M., and Nomura K., The Synthesis of Cyclic Olefin Copolymers (COCs) by Ethylene Copolymerisations with Cyclooctene, Cycloheptene, and with Tricyclo[6.2.1.0(2,7)]undeca-4-ene: The Effects of Cyclic Monomer Structures on Thermal Properties, Chem., 11, 5590-5600, 2020.
  45. Galan N.J., Burroughs J.M., Maroon C.R., Long B.K., and Brantley J.N., Vinyl-Addition Polymerizations of Cycloallenes: Synthetic Access to Congeners of Cyclic-Olefin Polymers, Chem., 11, 5578-5581, 2020.
  46. Wang Z., Shu X., Zhang H., Gao L., Li Y., and Cai Z., Synthesis of 1,2-Bis(imidazolidin-2-imine)Benzene Nickel Complexes and Their Application for Norbornene (co)Polymerization with Styrene, Polym. J., 150 110426, 2021.
  47. Zhang R., Kim E.S., Romero-Diaz S., Wang X., Huang G., Li A., Yang Y., and Lee P.C., Cyclic Olefin Copolymer Foam: A Promising Thermal Insulation Material, Eng. J., 409, 12825, 2021.
  48. Ahmadjo S., Arabi H., Zohuri G.H., Nekoomanesh M.M., Nejabat G.H., and Mortazavi M.M., Preparation of Ethylene/α-Olefins Copolymers Using (2-RInd)2ZrCl2/MCM-(R:Ph,H) Catalyst, Microstructural Study, Therm. Anal. Calorim., 116, 417-426, 2014.
  49. Pourtaghi-Zahed H., Zohuri G.H., and Ahmadjo S., Unique Microstructure Analysis of Ethylene-Propylene Copolymer Synthesized Using Catalytic System Based on α-Diimine Nickel Complexes: A Comparative Study by 13CNMR Technique, Res., 21, 365-375, 2014.
  50. Damavandi S., Samadieh N., Ahmadjo S., Etemadinia Z., and Zohuri G.H., Novel Ni-Based FI Catalyst for Ethylene Polymerization, Polym. J., 64, 118-125, 2015.
  51. Khoshsefat M., Zohuri G.H., Ramezanian N., Ahmadjo S., and Haghpanah M., Polymerization of Ethylene Using a Series of Binuclear and a Mononuclear Ni (II)-Based Catalysts, Polym. Sci., 54, 3000-3011, 2016.
  52. Khoshsefat M., Ahmadjo S., Mortazavi M.M., Zohuri G.H., and Soares J.P.B., Synthesis of Low to High Molecular Weight Poly(1-hexene); Rigid/Flexible Structures in a Di- and Mononuclear Ni-Based Catalyst Series, J. Chem., 42, 8334-8337, 2018.
  53. Khoshsefat M., Dechal A., Ahmadjo S., Mortazavi M.M., Zohuri G.H., and Soares J.P.B., Synthesis of Poly(a-olefins) Containing Rare Short Chain Branches by Dinuclear Ni-Based Catalysts, J. Chem., 42, 18288-18296, 2018.
  54. Khoshsefat M., Dechal A., Ahmadjo S., Mortazavi M.M., Zohuri G.H., and Soares J.P.B., Cooperative Effect through Different Bridges in Nickel Catalysts for Polymerization of Ethylene, Organomet. Chem., 33, 4929, 2019.
  55. Maddah Y., Ahmadjo S., Mortazavi M.M., Sharif F., Hassanian-Moghaddam D., and Ahmadi M., Control Over Branching Topology by Introducing a Dual Catalytic System in Coordinative Chain Transfer Polymerization of Olefins, Macromolecules, 53, 4312-4322, 2020.
  56. Khoshsefat M., Dechal A., Ahmadjo S., Mortazavi M.M., Zohuri G.H., and Soares J.P.B., Zn-Assisted Cooperative Effect for Copolymers Made by Hetero Dinuclear Fe-Ni Catalyst, Cat. Chem., 12, 5809-5818, 2020.
  57. Janiak C. and Lassahn P.L., Metal Catalysts for the Vinyl Polymerization of Norbornene., Mol. Catal. A Chem., 166, 193-209, 2001.
  58. Sato Y., Nakayama Y., and Yasuda H., Controlled Vinyl-Addition-Type Polymerization of Norbornene Initiated by Several Cobalt Complexes Having Substituted Terpyridine Ligands, Organomet. Chem., 689, 744-750, 2004.
  59. Bao F., Lü X., Qiao Y., Gui G., Gao H., and Wu Q., Nickel and Cobalt Complexes Bearing β-Ketoamine Ligands: Syntheses, Structures and Catalytic Behavior for Norbornene Polymerization, Organomet. Chem., 19, 957-963, 2005.
  60. Chen J., Huang Y., Li Z., Zhang Z., Wei C., Lan T., and Zhang V., Syntheses of Iron, Cobalt, Chromium, Copper and Zinc Complexes with Bulky Bis(Imino)Pyridyl Ligands and Their Catalytic Behaviors in Ethylene Polymerization and Vinyl Polymerization of Norbornene, Mol. Catal. A Chem., 259, 133-141, 2006.
  61. Blank F. and Janiak C., Metal Catalysts for the Vinyl/Addition Polymerization of Norbornene, Coord. Rev., 253, 827-861, 2009.
  62. Thansandote P., Chong E., Feldmann K., and Lautens M., Palladium-Catalyzed Domino C-C/C-N Coupling Using a Norbornene Template: Synthesis of Substituted Benzomorpholines, Phenoxazines, and Dihydrodibenzoxazepines, Organomet. Chem., 8, 3495-3498, 2010.
  63. Boggioni L. and Tritto I., Polyolefins with Cyclic Comonomers, Polyolefins 50 Years after Ziegler Natta II, Springer Berlin, Heidelberg, 117–141, 2013.
  64. Lago W.S.R. and Ahoussou A.P., Physico-chemical Ageing of Ethylene–Norbornene Copolymers: A Review, Mater. Sci., 52, 6879-6904, 2017.
  65. Sarttori G., Ciampeli F., and Cameli N., Polymerization of Norbornene, Ind., 45, 1478-1482, 1963.
  66. Kaminsky W., New Polymers by Metallocene Catalysis, Chem. Phys., 197, 3907-3945, 1996.
  67. Kaminsky W., Bark A., and Arndt M., New Polymers by Homogenous Zirconocene/Aluminoxane Catalysts, Chem. Macromol. Sym., 47, 83-93, 1991.
  68. Wu Q. and Lu Y., Synthesis of a Soluble Vinyl-Type Polynorbornene with a Half-Titanocene/Methylaluminoxane Catalyst, Polym. Sci., 40, 1421-1425, 2002.
  69. Jung H.Y., Hong S.D., Jung M.W., Lee H., and Park Y.W., Norbornene Copolymerization with α-Olefins Using Methylene-Bridged Ansa-Zirconocene, Polyhedron, 24, 1269-1273, 2005.
  70. Shiono T., Sugimoto M., Hasan T., Cai Z., and Ikeda T., Random Copolymerization of Norbornene with Higher 1-Alkene with Ansa-Fluorenylamidodimethyltitanium Catalyst, Macromolecules, 41, 8292-8294, 2008.
  71. Manteghi A., Arabi H., and Jahani Y., Synthesis, Characterization, Rheological and Thermal Behavior of Metallocene Ethylene - Norbornene Copolymers with Low Norbornene Content Using Pentafluorophenol Modified Methylaluminoxane, Int., 64, 900-906, 2015.
  72. Tritto I., Boggioni L., Zetta L., Provasoli A., and Ferro D.R., Influence of Diethyl Zinc on Ethylene-Norbornene Copolymerization, Macromolecules, 33, 8931-8936, 2000.
  73. Gao Y.H. and Qing W., Bis(б-lkyloxoimine) Titanium-MAO Catalyst, Chin. Chem., 53, 1634-1640, 2010.
  74. Xing Y., Chen Y., He X., and Nie H., Nickel(II) Complexes Bearing the Bis(β-ketoamino) Ligand for the Copolymerization of Norbornene with a Higher 1-Alkene, Appl. Polym. Sci., 124, 1323-1332, 2012.
  75. Liu Y., Ouyang M., He X., Chen Y., and Wang K., Novel Ni and Pd (benzocyclohexan-ketonaphthylimino)2 Complexes for Copolymerization of Norbornene with Octene, Appl. Polym. Sci., 128, 216-223, 2013.
  76. He X., Deng Y., Han Z., Yang Y., and Chen D., Highly Symmetric Single Nickel Catalysts Bearing Bulky Bis(α-diimine) Ligand: Synthesis, Characterization, and Electron-Effects on Copolymerization of Norbornene with 1-Alkene at Elevated Temperarure., Polym. Sci. 54, 3495-3505, 2016.
  77. Mortazavi S.M.M., Galland G.B., Khonakdar H., Ahmadjo S., and Hayati S., Effect of Chain Transfer Agent on Microstructure and Thermal Properties of Cyclic Olefin Copolymer with Low Comonomer Content, Therm. Anal. Calorim., 147, 13341-13350, 2022.
  78. McKeen L., The Effect of Sterilization Methods on Plastics and Elastomers, William Andrew, 3rd ed., 235-267, 2018.
  79. Bundgaard F. and Geschke O., Rapid Prototyping Tools and Methods for All-Topas Cyclic Olefin Copolymer Fluidic Microsystems, Mech. Eng. Sci., 220, 1625-1632, 2006.
  80. Khanarian G., Optical Properties of Cyclic Olefin Copolymers, Eng., 40, 1024-1029, 2001.
  81. TOPAS Advanced Polymers, Medical Applications, http://www.topas.com, Available in October 2014.
  82. Liu C., Sun X., Zhang J., and He J., Thermal Degradation Studies of Cyclic Olefin Copolymers, Degrad. Stab., 81, 197-205, 2003.
  83. Scrivani T., Perez E., and Perena J.M., Stress-Strain Behaviour, Microhardness, and Dynamic Mechanical Properties of a Series of Ethylene-Norbornene Copolymers, Chem. Phys., 202, 2547-2553, 2001.
  84. Nielsen K., Rasmussen H.K., Adam A.J.L, Planken P.C.M., Bang O., and Jepsen P.U., Bendable, Low-Loss Topas Fibers for the Terahertz Frequency Range, Express., 17, 8592-8601, 2009.
  85. Emiliyanov G., Jensen J.B., Bang O., Hoiby P.E., Pedersen L.H., Kjær E., and Lindvold L., Localized Biosensing with Topas Microstructured Polymer Optical Fiber, Lett., 32, 460-462, 2007.
  86. Perl J., Shin J., Schumann J., Faddegon B., and Paganetti H., TOPAS: An Innovative Proton Monte Carlo Platform for Research and Clinical Applications, Phys., 39, 6818-6837, 2012.
  87. Li L., Gomes P.T., Lemos M.A.N.D.A., Lemos F., and Fan Z., Polymerisation of Norbornene Catalysed by Highly Active Tetradentate Chelated α-Diimine Nickel Complexes, Chem. Phys., 212, 367-374, 2011.
  88. Patil A.O., Zushma S., Stibrany R.T., Rucker S.P., and Wheeler L.M., Vinyl-Type Polymerization of Norbornene by Nickel(II) Bisbenzimidazole Catalysts, Polym. Sci., 41, 2095-2106, 2003.
  89. Liu C., Yu J., Sun X., Zhang J., and He J., Thermal Degradation Studies of Cyclic Olefin Copolymers, Degrad. Stab., 81, 197-205, 2003.
  90. TOPAS Advanced Polymers, Cyclic Olefin Copolymer (COC), http://www.topas.com, Available in April 2011.
  91. Plastics Technology, How to Onjection Mold Cyclic Olefin Copolymers, http://www.ptonline.com, Available in 2016.
  92. TOPAS Advanced Polymers, Processing Conditions for Injection Molding TOPAS®5013S-04, http://www.topas.com/, Available in 06.09.2013.
  93. ZEON, Molding Guide, ZEONEX® 690R, http://www.zeonex.com, Available in February 2015.
  94. DeGrazio, Pharmaceutical Dosage Forms-Parenteral Medications: Plastic Packaging for Parenteral Drug Delivery, 3rd ed., CRC, 2010.