رفتار مکانیکی آمیزه‌های لاستیکی پرشده با دوده : مدل‌های ابرکشسان توسعه‌یافته بر پایه تشدید کرنش

نوع مقاله : پژوهشی

نویسندگان

تهران، پژوهشگاه پلیمر و پتروشیمی ایران، پژوهشکده فرایند پلیمرها، گروه لاستیک، صندوق پستی112-14975

چکیده

فرضیه: رفتار ابرکشسان آمیزه‌های لاستیکی پرشده با پرکننده‌های تقویتی (دوده) به مقدار پرکننده وابسته است. نظریه‌های پیشین، مبتنی بر ارائه روابط پدیده‌شناسی برای پیش‌بینی این رفتار هستند. در این پژوهش با رویکردی نو بر پایه نظریه تشدید کرنش، معادله‌های پیشین بسط و توسعه داده‌شده و عملکرد آن‌ها برای پیش‌بینی رفتار آمیزه لاستیکی موردسنجش قرار گرفت.
روش‌ها: شش آمیزه لاستیکی بر پایه کائوچوی SBR‌ تقویت‌شده با مقادیر مختلف دوده (20، 30، 40، 50 و60 پارت دوده) به همراه آمیزه خالص (فاقد) پرکننده تهیه شدند. رفتار مکانیکی این نمونه‌ها در حالت‌های کشش تک‌محوری، فشاری، برشی ساده همراه با تغییرات حجمی با آزمون‌های تجربی تعیین شد. از مدل مکانیکی Yeoh‌ برای بیان رفتار ابرکشسان آمیزه خالص استفاده شد که پارامترهای آن به‌کمک برازش داده‌های آزمون کشش تک‌محوری و تغییرات حجمی به‌دست آمدند. دو مدل تشدید کرنش ارائه‌شده توسط Bergstrom و Boyce‌ و مدل پیشنهادی در این پژوهش درنظر گرفته شدند. پارامترهای مدل پیشنهادی به‌کمک یک الگوریتم کمینه‌سازی به‌همراه زیر برنامه اختصاصی به دست آمدند که برای اولین بار در این پژوهش تهیه‌شده بود. برای سنجش عملکرد مدل پیشنهادی و مقایسه آن با مدل Bergstrom  و Boyce از این مدل‌ها برای شبیه‌سازی سه آزمون کششی، فشاری و برشی ساده استفاده و نتایج با داده‌های تجربی متناظر مقایسه و تحلیل شد.
یافته‌ها: نتایج  نشان داد، بسط و توسعه مدل‌ Bergstrom و Boyce به مدل پیشنهادی در این پژوهش می‌تواند موجب پیش‌بینی دقیق‌تر رفتار مکانیکی ابرکشسان آمیزه‌ها شود. ضمن آنکه برای هر آمیزه لاستیکی باید پارامترهای مدل تشدید کرنش خاص هر آمیزه به‌طور جداگانه تعیین شود. همچنین نشان داده شد، تلفیق مدل ابرکشسان Yeoh (که بر پایه رابطه به چگالی انرژی کرنشی با ناوردای اول تانسور تغییر شکل است) با رابطه پیشنهادی جدید برای تشدید کرنش قابلیت بسیار خوبی در پیش‌بینی رفتار را درشیوه‌های مختلف بارگذاری دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Mechanical Behavior of Filled Rubber Compounds: Hyper-Elastic Models Based on Strain Amplification

نویسندگان [English]

  • Mir Hamid Reza Ghoreishy
  • Foroud Abbassi-Sourki
Department of Rubber Processing and Engineering, Faculty of Processing, Iran Polymer and Petrochemical Institute, P.O. Box: 14975-112, Tehran, Iran
چکیده [English]

Hypothesis: The hyperelastic behavior of the rubber compounds filled with reinforcing fillers (carbon black) is dependent on the filler content. The previous theories for the prediction of the mechanical behavior of these materials are
based on phenomenological relationships. In this research, a new approach based on the amplified strain theory is presented and its reliability and applicability are examined for a rubber compound reinforced with different carbon black contents Methods: Six rubber compounds based on SBR reinforced with different carbon black contents (20, 30, 40, 50, and 60 phr) as well as the neat compound were prepared. The mechanical behavior of these compounds under uniaxial tension mode, volumetric changes, compression, and simple shear modes were experimentally determined. The
Yeoh material model was selected for the neat compound and material constants were calibrated using the uniaxial and volumetric changes data. Two strain amplification relationships were selected including the Bergstrom-Boyce and our newly proposed models. The parameters of the latter model were determined using an optimization algorithm in which a new UHYPER subroutine was developed and linked to Abaqus main code. To assess the proposed model and comparing it with the Bergstrom Boyce model the simulation results obtained from the finite element model of the uniaxial, compression, and simple shear tests were compared with their corresponding experimental data.
Findings: The results showed that hyperelastic behaviors of the filled rubber compounds, predicted by our developed strain amplified model, are more accurate than those obtained by the Bergstrom-Boyce equation. It is also found that the combination of the Yeoh hyperelastic model with our proposed relationship can precisely predict the mechanical behavior under different modes of loadings..

کلیدواژه‌ها [English]

  • Rubber
  • Mechanical behavior
  • Filler
  • Strain amplification
  • Finite element method
  1. Smallwood H.M., Limiting Law of the Reinforcement of
    Rubber, J. Appl. Phys., 15, 758-766, 1944.
  2. Haines B.M. and Mazzucato A.L., A Proof of Einstein’s
    Effective Viscosity for a Dilute Suspension of Spheres, SIAM J. Math. Anal., 44, 2120-2145, 2012.
  3. Guth E., Theory of Filler Reinforcement, Rubber Chem.
    Technol
    ., 18, 596-604, 1945.
  4. Ward I.M. and Sweeney J., Mechanical Properties of Solid Polymers, 3rd ed., John Wiley and Sons, Chichester, West
    Sussex, 227-259, 2013.
  5. Mori T. and Tanaka K., Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions, Acta Metall., 21, 571-574, 1973.
  6. Raju B., Hiremath S.R., and Mahapatra D.R., A Review of
    Micromechanics Based Models for Effective Elastic Properties of Reinforced Polymer Matrix Composites, Compos. Struct., 204, 607-619, 2018.
  7. Abhisha V.S., Sisanth K.S., Parameswaranpillai J., Pulikkalparambil H., Siengchin S., Thomas S., and Stephen R., Comprehensive Experimental Investigations and Theoretical
    Predictions on the Physical Properties of Natural Rubber Composites, J. Appl. Polym. Sci., 139, e53197, 2022.
  8. Luo Y., Isotropized Voigt-Reuss Model for Prediction of
    Elastic Properties of Particulate Composites, Mech. Adv. Mater. Struct., 29, 3934-3941, 2022.
  9. Kareem S., Al-Ansari L.S., and Gömze L.A., Modeling of Modulus of Elasticity of Nano-Composite Materials: Review and Evaluation, J. Phys. Conf. Ser., 2315, 012038, 2022.
  10. Mullins L. and Tobin N.R., Stress Softening in Rubber
    Vulcanizates. Part I. Use of a Strain Amplification Factor to Describe the Elastic Behavior of Filler-Reinforced Vulcanized Rubber, J. Appl. Polym. Sci., 9, 2993-3009, 1965.
  11. Bergström J.S. and Boyce M.C., Mechanical Behavior of Particle
    Filled Elastomers, Rubber Chem. Technol., 72, 633-56, 1999.
  12. Bergström J.S. and Boyce M.C., Large Strain Time-Dependent Behavior of Filled Elastomers, Mech. Mater., 32, 627-644, 2000.
  13. Yeoh O.H., Some Forms of the Strain Energy Function for Rubber, Rubber Chem. Technol., 66, 754-771, 1993.
  14. Ghoreishy M.H.R. and Abbassi-Sourki F., Study the Hyper-Viscoelastic and Stress Softening Behaviors of Various SBR/CB Filled Compounds Using a Triple Model, Iran. J. Polym. Sci. Technol. (Persian), 33, 339-350, 2020.
  15. Ghoreishy M.H.R., Computer Simulation of Passenger Car
    Radial Tires Using the Finite Element Method, Michael D.
    Pfeffer and Bachmeier E. (Eds.), Comput. Simul. Adv. Res. Appl., Nova Science, New York, 1-61, 2018.
  16. Brown R., Physical Testing of Rubber, 4th ed., Springer, New York, 155-157, 2006.
  17. Abaqus, Simulia Corporation, Dassault Systemes, Providence, RI, USA, 2020.
  18. MCalibration, Veryst Engineering, Needham, MA, USA, 2020.
  19. Isight, Simulia Corporation, Dassault Systemes, Providence, RI, USA, 2020.
  20. Govindjee S., An Evaluation of Strain Amplification Concepts via Monte Carlo Simulations of an Ideal Composite, Rubber Chem. Technol., 70, 25-37, 1997.
  21. Ghoreishy M.H.R. and Abbassi-Sourki F., Development of a New Model Based on Ogden-Roxburgh Model for the Prediction
    of the Stress-Softening Behavior of Carbon Black-Filled
    Rubber Compounds, Iran. J. Polym. Sci. Technol. (Persian), 35, 69-82, 2022.