اصلاح خواص غشای پلی(اتر-b-آمید) با استفاده از گلیسرول برای جداسازی گاز CO2/N2

نوع مقاله: پژوهشی

نویسندگان

1 اراک، دانشگاه اراک، دانشکده فنی و مهندسی، گروه مهندسی شیمی، کدپستی 8349-8-38156

2 1- اراک، دانشگاه اراک، دانشکده فنی و مهندسی، گروه مهندسی شیمی، کدپستی 8349-8-38156 2- اراک، دانشگاه اراک، موسسه علوم نانو و نانوتکنولوژی، کد پستی 3848177584

3 شهرضا، دانشگاه آزاد اسلامی، واحد شهرضا، دانشکده فنی مهندسی، گروه مهندسی شیمی، کدپستی 86145-311

چکیده

فرضیه: جداسازی کربن‌ دی‌اکسید (CO2) از گازهای خروجی دودکش‌ها به‌‌عنوان گاز گلخانه‌ای حاصل از سوختن سوخت‌های فسیلی از دغدغه‌های اصلی در کنترل انتشار گازهای گلخانه‌ای است. از میان فناوری‌های مختلف جداسازی گاز، فناوری غشایی به دلیل مزایای فراوان، توجه بسیاری از پژوهشگران را به خود جلب کرده است.
روش‌ها: در این پژوهش، غشاهای آمیخته‌ای جدیدی از پلی(‌اتر-b-‌آمید) (Pebax) به‌عنوان ساختار اسکلتی غشا و گلیسرول به‌عنوان ماده افزودنی در شبکه غشا، به روش ریخته‌گری محلول-تبخیر حلال تهیه شد. تراوایی گازهای CO2 و نیتروژن (N2) در فشار خوراک  2 تا 10bar  دمای 25 درجه اندازه‌گیری شد. سپس، گزینش‌پذیری CO2/N2 و نیز ضرایب نفوذ و انحلال گازها محاسبه شد. همچنین، اثر افزودن ترکیب درصدهای وزنی مختلف گلیسرول (%25-0) در ساختار غشا و اثر فشار خوراک بر تراوایی CO2 و گزینش‌پذیری CO2/N2 نیز بررسی شد. برای تعیین خواص شکل‌شناسی غشاهای تهیه‌شده، از آزمون‌های میکروسکوپی الکترونی پویشی گسیل میدانی
(FE-SEM)، پراش پرتو X، گرماسنجی پویشی تفاضلی (DSC) و طیف‌سنجی زیرقرمز تبدیل فوریه (FTIR) استفاده شد.  
یافته‌ها: نتایج نشان داد، با افزودن گلیسرول در شبکه Pebax، تراوایی CO2 تا حدودی کاهش‌یافته اما گزینش‌پذیری CO2/N2 به‌طور چشمگیری افزایش یافته است. در فشار 10bar، گزینش‌پذیری غشای آمیخته‌ای با %15 وزنی گلیسرول %172 بیشتر از غشای Pebax خالص شد و تراوایی CO2 فقط به مقدار %23 کاهش یافت. بنابراین، غشای آمیخته‌ای دارای %15 وزنی گلیسرول به دلیل داشتن تراوایی مناسب CO2 و بیشترین مقدار گزینش‌پذیری CO2/N2، به‌عنوان غشای بهینه انتخاب شد. تصاویر FE-SEM غشای Pebax- گلیسرول بیانگر سازگاری مناسب و همگنی گلیسرول در ماتریس Pebax بود. آزمون XRD مشخص کرد، افزودن گلیسرول سبب کاهش بلورینگی غشا و کم‌شدن فاصله بین زنجیرهای پلیمر می‌‌شود. نتایج DSC نشان داد، با افزودن گلیسرول در ساختار غشا، دمای انتقال شیشه‌ای اندکی کمتر می‌شود. آزمون FTIR هیچ نوار جذبی جدیدی در مقایسه با نوارهای مربوط به مواد تشکیل‌دهنده غشا نشان نداد که نشانگر برهم‌کنش فیزیکی بین Pebax و گلیسرول است.

کلیدواژه‌ها


عنوان مقاله [English]

Modification of Poly(ether-b-amide) Membrane Properties Using Glycerol for CO2/N2 Gas Separation

نویسندگان [English]

  • Reyhane Ahmadi 1
  • Hamidreza Sanaeepur 2
  • Abtin Ebadi Amooghin 2
  • Ali Heydari 3
1 1. Department of Chemical Engineering, Faculty of Engineering, Arak University, Postal Code: 38156-8-8349, Arak, Iran
2 1. Department of Chemical Engineering, Faculty of Engineering, Arak University, Postal Code: 38156-8-8349, Arak, Iran 2. Institute of Nanosciences and Nanotechnology, Arak University, Postal Code: 3848177584, Arak, Iran
3 Department of Chemical Engineering, Faculty of Engineering, Shahreza Branch, Islamic Azad University, Postal Code: 311-86145, Shahreza, Iran
چکیده [English]

Hypothesis: Carbon dioxide (CO2) separation from flue gases as a green-house gas produced from the combustion of fossil fuels is one of the main concerns in controlling the green-house gas emissions. Among the various technologies employed for gas separation, membrane technology due to its many advantages has attracted more attentions.
Methods: A new blend membranes were prepared by solution casting/solvent evaporation method from poly(ether-b-amide) (Pebax) – as a backbone structure – and glycerol as an additive in the membrane matrix. CO2 and N2 permeability rates were measured at pressures of 2-10 bar and temperature of 25 °C. Afterwards, the CO2/N2 gas permeation properties were determined. Moreover, the effect of different glycerol loadings (0-25 wt%) in the membrane matrix and also the effect of feed pressure on CO2 permeability and CO2/N2 selectivity were investigated. Morphological characteristics of the prepared membranes were determined by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) analyses.
Findings: The achieved results showed that by addition of glycerol to Pebax matrix, CO2 permeability was decreased somewhat but the CO2/N2 selectivity was considerably increased. At pressure of 10 bar, CO2/N2 selectivity of the blend membrane with 15 wt% glycerol was 172% higher than that of pure Pebax, while the CO2 permeability declined only by about 23%. Therefore, the blend membrane containing 15 wt% glycerol with a good CO2 permeability and a high CO2/N2 selectivity was selected as the optimum membrane. The FE-SEM observations revealed the compatibility and homogeneity of glycerol in the Pebax matrix. The XRD analysis determined that the addition of glycerol decreases the membrane crystallinity and the d-spacing between the polymer chains. The DSC results revealed that the insertion of glycerol in the membrane structure decreased the glass transition temperature. The FTIR spectra showed no new absorption band except for those for the constituent species, which suggests a physical interaction between Pebax and glycerol.

کلیدواژه‌ها [English]

  • blend membrane
  • Pebax
  • Glycerol
  • carbon dioxide
  • nitrogen
  1. Abedini R., Omidkhah M., and Dorosti F., Effect of Amine-Functionalized MIL 53 Metal Organic Frameworks on the Performance of Poly(4-methyl-1-pentyne) Membrane in CO2/CH4 Mixed Gas Separation, Iran. J. Polym. Sci. Technol. (Persian), 28, 131-147, 2015.
  2. Casper J.K., Greenhouse Gases: Worldwide Impacts, Infobase, New York, 2010.
  3. Sanaeepur S., Sanaeepur H., Kargari A., and Habibi M.H., Renewable Energies: Climate-Change Mitigation and International Climate Policy, Int. J. Sustain. Energ., 33, 203-212, 2014.
  4. Ghasemi Estahbanati E., Omidkhah M., and Ebadi Amooghin A., Interfacial Design of Ternary Mixed Matrix Membranes Containing Pebax 1657/Silver-Nanopowder/[BMIM][BF4] for Improved CO2 Separation Performance, ACS Appl. Mater. Interfaces, 9, 10094-10105, 2017.
  5. Esmaeilipur M., Kargari A., and Sanaeepur H., Preparation and Characterization of a Cross-Linked Matrimid/Polyvinylidene Fluoride Composite Membrane for H2/N2 Separation, Iran. J. Polym. Sci. Technol. (Persian), 29, 505-517, 2017.
  6. Sanaeepur H., Ebadi Amooghin A., Moghadassi A., Kargari A., Ghanbari D., Sheikhi Mehrabadi Z., and Nademi M., CO2/CH4 Separation via Polymeric Blend Membrane, Iran. J. Polym. Sci. Technol. (Persian), 23, 17-28, 2010.
  7. Sanaeepur H., Ebadi Amooghin A., Moghadassi A., and Kargari A., Preparation and Characterization of Acrylonitrile-Butadiene-Styrene/Poly(Vinyl Acetate) Membrane for CO2 Removal, Sep. Purif. Technol., 80, 499-508, 2011.
  8. Zamiri M.A., Kargari A., and Sanaeepur H., Ethylene Vinyl Acetate/Poly(ethylene glycol) Blend Membranes for CO2/N2 Separation, Greenh. Gases Sci. Technol., 5, 668-681, 2015.
  9. Khalilinejad I., Kargari A., and Sanaeepur H., Preparation and Characterization of (Pebax 1657+Silica Nanoparticle)/PVC Mixed Matrix Composite Membrane for CO2/N2 Separation, Chem. Pap., 71, 803-818, 2017.
  10. Ebadi Amooghin A., Sanaeepur H., Omidkhah M., and Kargari A., Ship-In-A-Bottle, a New Synthesis Strategy for Preparing Novel Hybrid Host-Guest Nanocomposites for Highly Selective Membrane Gas Separation, J. Mater. Chem. A, 6, 1751-1771, 2018.
  11. Khalilinejad I., Kargari A., and Sanaeepur H., Preparation of Ethylene Vinyl Acetate/Zeolite 4A Mixed Matrix Membrane for CO2/N2 Separation, Iran. J. Polym. Sci. Technol. (Persian), 29, 231-247, 2016.
  12. Khalilinejad I., Sanaeepur H., and Kargari A., Preparation of Poly(ether-6-block-amide)/PVC Thin Film Composite Membrane for CO2 Separation: Effect of Top Layer Thickness and Operating Parameters, J. Membr. Sci. Res., 1, 124-129, 2015.
  13. Ebadi Amooghin A., Sanaeepur H., Zamani Pedram M., Omidkhah M., and Kargari A., New Advances in Polymeric Membranes for CO2 Separation, in: Méndez-Vilas A. and Solano-Martín A. (Eds.), Polymer Science: Research Advances, Practical Applications and Educational Aspects, Formatex Research Center, Badajoz, Spain, 354-368, 2016.
  14. Sanaeepur H., Nasernejad B., and Kargari A., Cellulose Acetate/Nano-Porous Zeolite Mixed Matrix Membrane for CO2 Separation, Greenh. Gases Sci. Technol., 5, 291-304, 2015.
  15. Rezakazemi M., Ebadi Amooghin A., Montazer-Rahmati M.M., Ismail A.F., and Matsuura T., State-of-the-Art Membrane Based CO2 Separation Using Mixed Matrix Membranes (MMMs): An Overview on Current Status and Future Directions, Prog. Polym. Sci., 39, 817-861, 2014.
  16. Sanaeepur H., Kargari A., Nasernejad B., Ebadi Amooghin A., and Omidkhah M., A Novel Co2+ Exchanged Zeolite Y/Cellulose Acetate Mixed Matrix Membrane For CO2/N2 Separation, J. Taiwan Inst. Chem. Eng., 60, 403-413, 2016.
  17. Abedini R. and Omidkhah M., A Mixed Matrix Membrane of Poly(4-methyl-1-pentyne) Filled with MIL 53 Particles and Its Application in Separation of Carbon Dioxide and Nitrogen Gas Mixtures, Iran. J. Polym. Sci. Technol. (Persian)29, 127-138, 2016.
  18. Zamani Pedram M., Omidkhah M.R., Ebadi Amooghin A., Yaghani R., and Moghadam F., DEA Impregnated Cross-Linked Polyvinyl Alcohol/Glutaraldehyde Polymeric Systems as CO2/CH4 Gas Separation Membranes, Iran. J. Polym. Sci. Technol. (Persian), 25, 477-489, 2013.
  19. Rajabi Z., Afshar Taromi F., Kargari A., and Sanaeepur H., CO2/N2 Gas Separation using Nanocomposite Membranes Comprised of Ethylene-Propylene-Diene Monomer/Multi-Walled Carbon Nanotubes (EPDM/MWCNT), Iran. J. Polym. Sci. Technol. (Persian), 28, 211-224, 2015.
  20. Bandehali S., Kargari A., Moghadassi A., Saneepur H., and Ghanbari D., Acrylonitrile–Butadiene–Styrene/Poly(Vinyl Acetate)/Nanosilica Mixed Matrix Membrane for He/CH4 Separation, Asia-Pac. J. Chem. Eng., 9, 638-644, 2014.
  21. Kargari A. and Sanaeepur H., Application of Membrane Gas Separation Processes in Petroleum Industry, Pant K.K., Sinha S., and Bajpai S. (Eds.), Advances in Petroleum Engineering I Refining, LLC, Houston, USA, 592-622, 2015.
  22. Ebadi Amooghin A., Omidkhah M., Sanaeepur H., and Kargari A., Preparation and Characterization of Ag+ Ion-Exchanged Zeolite-Matrimid®5218 Mixed Matrix Membrane for CO2/CH4 Separation, J. Energy Chem., 25, 450-462, 2016.
  23. Alavi S.A., Kargari A., Karimi M., Sanaeepur H., and Lariji S., Effects of Preparation Conditions on Morphology of Polyacrylonitrile Micro/Ultrafiltration Membrane and Its Application in Protein and Fat Separation from Milk, Iran. J. Polym. Sci. Technol. (Persian), 27, 63-78, 2014.
  24. Feng S., Ren J., Li H., Hua K., Li X., and Deng M., Polyvinyl Acetate/Poly(amide-12-b-ethylene oxide) Blend Membranes for Carbon Dioxide Separation, J. Energ. Chem., 22, 837-844, 2013.
  25. Dong G., Li H., and Chen V., Challenges and Opportunities for Mixed-Matrix Membranes for Gas Separation, J. Mater. Chem. A, 1, 4610-4630, 2013.
  26. Reijerkerk S.R., Knoef M.H., Nijmeijer K., and Wessling M., Poly(ethylene glycol) and Poly(dimethyl siloxane): Combining Their Advantages into Efficient CO2 Gas Separation Membranes, J. Membr. Sci., 352, 126-135, 2010.
  27. Yave W., Car A., Peinemann K.V., Shaikh M.Q., Rätzke K., and Faupel F., Gas Permeability and Free Volume in Poly(amide-b-ethylene oxide)/Polyethylene Glycol Blend Membranes, J. Membr. Sci., 339, 177-183, 2009.
  28. Dia Z., Bai L., Navik Hval K., Zhang X., Zhang S., and Deng L., Pebax®/TSIL Blend Thin Film Composite Membranes for CO2 Separation, Sci. China Chem., 59, 538-546, 2016.
  29. Bernardo P., Jansen J.C., Bazzarelli F., Tasselli F., Fuoco A., Friess K., Izák P., and Jarmarová V., Gas Transport Properties of Pebax/Temperature Ionic Liquid Gel Membranes, Sep. Purif. Technol., 97, 73-82, 2012.
  30. Shishatskiy S., Pauls J.R.,. Nunes S.P, and Peinemann K.-V., Quaternary Ammonium Membrane Materials for CO2 Separation, J. Membr. Sci., 359, 44-53, 2010.
  31. Ghadimi A., Amirilargani M., Mohammadi T., Kasiri N., and Sadatnia B., Preparation of Alloyed Poly(ether block amide)/Poly(ethylene glycol diacrylate) Membranes for Separation of CO2/H2 (Syngas Application), J. Membr. Sci., 458, 14-26, 2014.
  32. Rabiee H., Soltanieh M., Mousavi S.A., and Ghadimi A., Improvement in CO2/H2 Separation by Fabrication of Poly(ether-b-amide6)/Glycerol Triacetate Gel Membranes, J. Membr. Sci., 469, 43-58, 2014.
  33. Car A., Yave W., Peinemann K.-V., and Stropnik C., Membrane Gas Separation, Tailoring Polymeric Membrane Based on Segmented Block Copolymers for CO2 Separation, Yampolskii Y. and Freeman B.D. (Eds.), , John Wiley and Sons Ltd., United Kingdom, 227-253, 2010.
  34. Reijerkerk S.R., Polyether Based Block Copolymer Membranes for CO2 Separation, PhD Thesis, Membrane Science and Technology group, University of Twente, Enschede, Netherlands, 2010.
  35. Sanaeepur H., Kargari A., and Nasernejad B., Aminosilane-Functionalization of a Nanoporous Y-Type Zeolite for Application in a Cellulose Acetate Based Mixed Matrix Membrane for CO2 Separation, RSC Adv., 4, 63966-63976, 2014.
  36. Ranjbaran F., Omidkhah M.R., and Ebadi Amooghin A., The Novel Elvaloy4170/Functionalized Multi-Walled Carbon Nanotubes Mixed Matrix Membranes: Fabrication, Characterization and Gas Separation Study, J. Taiwan Inst. Chem. Eng., 49, 220-228, 2015.
  37. Hosseinkhani O., Kargari A., and Sanaeepur H., Facilitated Transport of CO2 Through Co(II)-S-EPDM Ionomer Membrane, J. Membr. Sci., 469, 151-161, 2014.
  38. Ebadi Amooghin A., Omidkhah M., and Kargari A., The Effects of Aminosilane Grafting on NaY Zeolite–Matrimid®5218 Mixed Matrix Membranes for CO2/CH4 Separation, J. Membr. Sci., 490, 364-379, 2015.
  39. Alavi S.A., Kargari A., Sanaeepur H., and Karimi M., Preparation and Characterization of PDMS/Zeolite 4A/PAN Mixed Matrix Thin Film Composite Membrane for CO2/N2 and CO2/CH4 Separations, Res. Chem. Intermed., 43, 2959-2984, 2017.
  40. Kim J.H., Ha S.Y., and Lee Y.M., Gas Permeation of Poly(amide-6-b-ethylene oxide) Copolymer, J. Membr. Sci., 190, 179-193, 2001.
  41. Kim J.H. and Lee Y.M., Gas Permeation Properties of Poly(amide-6-b-ethylene oxide)-Silica Hybrid Membranes, J. Membr. Sci., 193, 209-225, 2001.
  42. Rahman M., Filiz V., Shishatskiy S., Abetz C., Neumann S., Bolmer S., Khan M.M., and Abetz V., Pebax with PEG Functionalized POSS as Nanocomposite Membranes for CO2 Seperation, J. Membr. Sci., 437, 286-297, 2013.
  43. Dai Y., Ruan X., Yan Z., Yang K., Yu M., Li H., Zhao W., and He G., Imidazole Functionalized Graphene Oxide/Pebax Mixed Matrix Membranes for Efficient CO2 Capture, Sep. Purif. Technol., 166, 171-180, 2016.
  44. Shamsabadi A.A., Seidi F., Salehi E., Nozari M., Rahimpour A., and Soroush M., Efficient CO2-Removal using Novel Mixed-Matrix Membranes with Modified TiO2 Nanoparticles, J. Mater. Chem. A, 5, 4011-4025, 2017.
  45. Car A., Stropnik C., Yave W., and Peinemann K.-V., Pebax/Polyethylene Glycol Blend Thin Film Composite Membranes for CO2 Separation: Performance with Mixed Gases, Sep. Purif. Technol., 62, 110-117, 2008.
  46. Wu H., Fang X., Zhang X., Jiang Z., Li B., and Ma X., Cellulose Acetate–Poly(N-vinyl-2-pyrolidone) Blend Membrane for Pervaporation Separation of Methanol/MTBE Mixtures, Sep. Purif. Technol., 64, 183-191, 2008.
  47. PerkinElmer, Tg of Glycerine using a Stainless Steel Gauze Scaffold, https://www.perkinelmer.com, Available in 2011.
  48. Hosseinzadeh Beiragh H., Omidkhah M., Abedini R., Khosravi T., and Pakseresht S., Synthesis and Characterization of Poly (ether-block-amide) Mixed Matrix Membranes Incorporated by Nanoporous ZSM-5 Particles for CO2/CH4 Separation, J. Chem. Eng., 11, 522-532, 2016.
  49. Kongjao S., Damronglerd S., and Hunsom M., Purification of Crude Glycerol Derived from Waste Used-Oil Methyl Ester Plant, J. Chem. Eng., 27, 944-949, 2010.
  50. Gomez Siurana A., Marcilla A., Beltran M., Berenguer D., Martinez Castellanos I., and Menargues S., TGA/FTIR Study of Tobacco and Glycerol-Tobacco Mixtures, Thermochim. Acta, 573, 146-157, 2013.
  51. Sanaeepur H., Ebadi Amooghin A., Moghadassi A., Kargari A., Moradi S., and Ghanbari D., A Novel Acrylonitrile-Butadiene-Styrene/Poly(ethylene glycol) Membrane: Preparation, Characterization, and Gas Permeation Study, Polym. Adv. Technol., 23, 1207-1218, 2012.