خواص و کاربردهای نانوکامپوزیت‌های پلیمر-نانوصفحه‌های گرافن

نوع مقاله: پژوهشی

نویسندگان

1 تهران، پژوهشگاه پلیمر و پتروشیمی ایران، پژوهشکده فرایند، گروه پلاستیک،‌ صندوق پستی 112-14975

2 تهران، دانشگاه آزاد اسلامی، واحد تهران شمال، دانشکده شیمی، صندوق پستی 936-19585

چکیده

در این مقاله، مطالعات انجام‌شده درباره نانوکامپوزیت‌های پلیمر-گرافن مرور شده است. پژوهش‌ها نشان می‌دهند، گرافن می‌تواند به‌عنوان قوی‌ترین ماده درنظر گرفته شود و روش Hummers یکی از روش‌های مناسب برای تولید آن است. عامل‌دارکردن با گروه‌های شیمیایی سازگار با ماتریس پلیمری به پراکنش این نانوذرات در ماتریس کمک می‌کند. اثر نانوصفحه‌ها بر رفتار تبلور نانوکامپوزیت‌ها در دو حالت هم‌دما و ناهم‌دما، مرحله هسته‌زایی و رشد بلورها بررسی شده است. برخی نتایج منتشرشده در این زمینه متناقض بوده و کاهش و نیز افزایش بلورینگی گزارش شده است. تغییر رسانندگی الکتریکی با افزودن گرافن و نیز روش‌ تعیین آستانه اتصال بررسی شده است. نتایج افزایش شایان توجه رسانندگی الکتریکی را با جادادن نانوصفحه‌های گرافن نشان داد. همچنین، خواص مکانیکی نانوکامپوزیت‌ها شامل مدول کشسانی، ازدیاد طول تا پارگی و کشش سطحی مرور شده است. نتایج گزارش‌شده افزایش مدول را به‌دلیل مدول بیشتر نانوصفحه‌های گرافن تأیید کرده است. اما، برای استحکام کششی و ازدیاد طول تا پارگی گزارش‌های متناقضی وجود دارد. عامل‌دارکردن نانوصفحه‌ها به افزایش بیشتر استحکام کششی نانوکامپوزیت‌ها از راه برهم‌کنش قوی‌تر پرکننده-ماتریس منجر می‌شود. رسانندگی گرمایی نانوکامپوزیت‌ها و روش‌های مطلوب اندازه‌گیری ثابت رسانندگی گرمایی بحث شد. نتایج نشان داد، نانوصفحه‌های گرافن بر رسانندگی گرمایی در مقایسه با رسانندگی الکتریکی کمتر مؤثر هستند. خواص رئولوژیکی نانوکامپوزیت‌ها با افزودن نانوصفحه‌های گرافن تغییر می‌کند و آستانه اتصال رئولوژی می‌تواند با آستانه الکتریکی متفاوت باشد. آستانه الکتریکی کوچک‌تر از آستانه رئولوژی، بدین مفهوم است که آستانه الکتریکی از تماس مستقیم نانوذرات به‌دست آمده است.

کلیدواژه‌ها


عنوان مقاله [English]

Polymer-Graphene Nanoplatelets Nanocomposites: Properties and Applications

نویسندگان [English]

  • Sepideh Gomari 1
  • Parvin Ehsani Namin 2
  • Ismaeil Ghasemi 1
1 Department of Plastics, Faculty of Processing, Iran Polymer and Petrochemical Institute, P.O. Box 14975-112, Tehran, Iran
2 Department of Chemistry, Tehran North Branch, Islamic Azad University, P.O. Box 19585-936, Tehran, Iran
چکیده [English]

A review study is presented in relation to polymer/graphene nanocomposites. The research works have shown that the graphene can be considered as the strongest material and the hummer’s method is a suitable method for its production. Functionalization by chemical groups compatible with its matrix can enhance dispersion of the nanoparticles within it. The effect of graphene nanoplatelets on the isothermal and non-isothermal crystallization behavior, nucleation and crystal growth is explained. Several contradicting results including both increase and decrease in crystallinity have been reported. The change of electrical conductivity with the addition of graphene and method of determining percolation threshold are presented. The results showed a significant increase in electrical conductivity by incorporation of graphene nanosheets. The mechanical properties of nanocomposites including elastic modulus, elongation-at-break and tensile strength are reviewed. The reported results revealed that modulus increased due to higher modulus of nanoparticles and there was a contradictory result for tensile strength and elongation-at-break. Functionalization of nanosheets could increase the tensile strength of nanocomposites through stronger adhesion between filler and matrix. The thermal conductivity of these nanocomposites and the desirable method for measurement of thermal conductivity constant are discussed. The results showed that graphene nanoplatelets are less effective in enhancing thermal conductivity in comparison to electrical conductivity. The rheological properties of nanocomposites were affected by addition of nanosheets and the obtained rheological percolation threshold was different from the electrical one. The lower electrical percolation in comparison to rheological one means electrical threshold is obtained from direct contact of nanoparticles.

کلیدواژه‌ها [English]

  • graphene nanoplatelet
  • polymeric nanocomposite
  • crystallization behavior
  • electrical conductivity
  • rheological behavior

1.   Novoselov K.S., Geim A.K., Morozov S.V, Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., and   Firsov A. A., Electric Field Effect in Atomically Thin Carbon Films, Science, 306, 666-669, 2004.

2.   Du X., Skachko I., Barker A., and Andrei E.Y., Approaching Ballistic Transport in Suspended Graphene, Nat. Nanotechnol., 3, 491-495, 2008.

3.   Balandin A.A., Ghosh S., Bao W., Calizo I., Teweldebrhan D., Miao F., and Lau C.N., Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett., 8, 902-907, 2008.

4.   Lee C., Wei X., Kysar J.W., and Hone J., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 321, 385-388, 2008.

5.   Wang X., You H., Liu F., Li M., Wan L., Li S., Li Q., Xu Y., Tian, R., and Yu Z., Large-scale Synthesis of Few Layered Graphene Using CVD, Chem. Vap. Depos. 15, 53-56, 2009.

6.   Dervishi E., Li Z., Watanabe F., Biswas A., Xu Y., Biris A.R., Saini V., and Biris A.S., Large-Scale Graphene Production by RF-cCVD Method, Chem. Commun., 4061-4063, 2009.

7.   Li X., Cai W., An J., Kim S., Nah J., Yang D., Piner R., Velamakanni A., Jung I., and Tutuc E., Large-area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils, Science, 324, 1312-1314, 2009.

8.   Li N., Wang Z., Zhao K., Shi Z., Gu Z.M., and Xu S., Large Scale Synthesis of  N-Doped Multi-Layered Graphene Sheets by Simple Arc-Discharge Method, Carbon, 48, 255-259, 2010.

9.   Karmakar S., Kulkarni N.V., Nawale A.B., Lalla N.P., Mishra R., Sathe V.G., Bhoraskar S.V., and Das A.K., A Novel Approach Towards Selective Bulk Synthesis of Few-Layer Graphenes in an Electric Arc, J. Phys., Part D: Appl. Phys., 42, 115201, 2009.

10. Kim C.D., Min B.K., and Jung W.S., Preparation of Graphene Sheets by the Reduction of Carbon Monoxide, Carbon, 47, 1610-1612, 2009.

11. Kosynkin D.V, Higginbotham A.L., Sinitskii A., Lomeda J.R., Dimiev A., Price B.K., and Tour J.M., Longitudinal Unzipping of Carbon Nanotubes to Form Graphene Nanoribbons, Nature, 458, 872-876, 2009.

12. Hirsch A., Unzipping Carbon Nanotubes: A Peeling Method for the Formation of Graphene Nanoribbons, Angew. Chemie Int. Ed., 48, 6594-6596, 2009.

13. Jiao L., Zhang L., Wang X., Diankov G., and Dai H., Narrow Graphene Nanoribbons from Carbon Nanotubes, Nature, 458, 877-880, 2009.

14. Zhang W., Cui J., Tao C., Wu Y., Li Z., Ma L., Wen Y., and Li G., A Strategy for Producing Pure Single-Layer Graphene Sheets Based on a Confined Self-assembly Approach, Angew. Chem., Int. Ed. Engl., 121, 5978-5982, 2009.

15. Bourlinos A.B., Georgakilas V., Zboril R., Steriotis T.A., and Stubos A.K., Liquid-Phase Exfoliation of Graphite Towards Solubilized Graphenes, Small, 5, 1841-1845 2009.

16. Hernandez Y., Nicolosi V., Lotya M., Blighe F.M., Sun Z., De S., McGovern I.T., Holland B., Byrne M., and Gun’Ko Y.K., High-yield Production of Graphene by Liquid-Phase Exfoliation of Graphite, Nat. Nanotechnol., 3, 563-568, 2008.

17. Liu N., Luo F., Wu H., Liu Y., Zhang C., and Chen J., One-step Ionic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly from Graphite, Adv. Funct. Mater., 18, 1518-1525, 2008.

18. Behabtu N., Lomeda J.R., Green M.J., Higginbotham A.L., Sinitskii A., Kosynkin D.V., Tsentalovich D., Parra-Vasquez A.N.G., Schmidt J., and Kesselman E., Spontaneous High-Concentration Dispersions and Liquid Crystals of Graphene, Nat. Nanotechnol., 5, 406-411, 2010.

19. Hummers W.S. (Jr) and Offeman R.E., Preparation of Graphitic Oxide, J. Am. Chem. Soc., 80, 1339, 1958.

20. Kuila T., Bose S., Hong C.E., Uddin M.E., Khanra P., Kim N.H. and Lee J.H., Preparation of Functionalized Graphene/Linear Low Density Polyethylene Composites by a Solution Mixing Method, Carbon, 49, 1033-1037, 2011.

21. Lomeda J.R., Doyle C.D., Kosynkin D.V, Hwang W.F., and Tour J.M., Diazonium Functionalization of Surfactant-Wrapped Chemically Converted Graphene Sheets, J. Am. Chem. Soc., 130, 16201-16206, 2008.

22. Salavagione H.J., Gomez M.A., and Martínez G., Polymeric Modification of Graphene Through Esterification of Graphite Oxide and Poly(vinyl alcohol), Macromolecules, 42, 6331-6334, 2009.

23. Zhong X., Jin J., Li S., Niu Z., Hu W., Li R., and Ma J., Aryne Cycloaddition: Highly Efficient Chemical Modification of Graphene, Chem. Commun., 46, 7340-7342, 2010.

24. Li W., Tang X., Zhang H., Jiang Z., Yu Z., Du X.S., and Mai Y.W., Simultaneous Surface Functionalization and Reduction of Graphene Oxide with Octadecylamine for Electrically Conductive Polystyrene Composites, Carbon, 49, 4724-4730, 2011.

25. Bekyarova E., Itkis M.E., Ramesh P., Berger C., Sprinkle M., de Heer W.A., and Haddon R.C., Chemical Modification of Epitaxial Graphene: Spontaneous Grafting of Aryl Groups, J. Am. Chem. Soc., 131, 1336-1337, 2009.

26. Choi J., Kim K., Kim B., Lee H., and Kim S., Covalent Functionalization of   Epitaxial Graphene by Azidotrimethylsilane, J. Phys. Chem. C, 113, 9433-9435, 2009.

27. Keramati M., Ghasemi I., Karrabi M., Azizi H., and Sabzi M., Dispersion of Graphene Nanoplatelets in Polylactic Acid with the Aid of a Zwitterionic Surfactant: Evaluation of the Shape Memory Behavior, Polym. Plast. Technol. Eng., 55, 1039-1047, 2016.

28. Stankovich S., Piner R.D., Chen X., Wu N., Nguyen S.T., and Ruoff R.S., Stable Aqueous Dispersions of Graphitic Nanoplatelets via the Reduction of Exfoliated Graphite Oxide in the Presence of Poly(sodium 4-styrenesulfonate), J. Mater. Chem., 16, 155-158, 2006.

29. Bai H., Xu Y., Zhao L., Li C., and Shi G., Non-covalent Functionalization of Graphene Sheets by Sulfonated Polyaniline, Chem. Commun., 1667-1669, 2009.

30. Liu P., Gong K., Xiao P., and Xiao M., Preparation and Characterization of Poly(vinyl acetate)-Intercalated Graphite Oxide Nanocomposite, J. Mater. Chem., 10, 933-935, 2000.

31. Lee Y.R., Raghu A.V., Jeong H.M., and Kim B.K., Properties of Waterborne Polyurethane/Functionalized Graphene Sheet Nanocomposites Prepared by an In Situ Method, Macromol. Chem. Phys., 210, 1247-1254, 2009.

32. Jang J.Y., Kim M.S., Jeong H.M., and Shin C.M., Graphite Oxide/Poly(methyl methacrylate) Nanocomposites Prepared by a Novel Method Utilizing Macroazoinitiator, Compos. Sci. Technol., 69, 186-191, 2009.

33. Matsuo Y., Tahara K., and Sugie Y., Structure and Thermal Properties of Poly(ethylene oxide)-Intercalated Graphite Oxide, Carbon, 35, 113-120, 1997.

34. Hirata M., Gotou T., Horiuchi S., Fujiwara M., and Ohba M., Thin-film Particles of Graphite Oxide 1: High-Yield Synthesis and Flexibility of The Particles, Carbon, 42, 2929-2937, 2004.

35. Ren P., WangH., Huang H., Yan D., and Li Z., Characterization and Performance of Dodecyl Amine Functionalized Graphene Oxide and Dodecyl Amine Functionalized Graphene/High-Density Polyethylene Nanocomposites: A Comparative Study, J. Appl. Polym. Sci., 131, 39803, 2014.

36. Kim H. and Macosko C.W., Processing-property Relationships of Polycarbonate/Graphene Composites, Polymer, 50, 3797-3809, 2009.

37. Kim H. and Macosko C.W., Morphology and Properties of Polyester/Exfoliated Graphite Nanocomposites, Macromolecules, 41, 3317-3327, 2008.

38. Prud’homme R.K., Ozbas B., Aksay I.A., Register R.A., and Adamson D.H., Functional Graphene-Rubber Nanocomposties, US Pat., 7745528B2, 2010.

39. Wakabayashi K., Pierre C., Dikin D.A., Ruoff R.S., Ramanathan T., Brinson L.C., and Torkelson J.M., Polymer-Graphite Nanocomposites: Effective Dispersion and Major Property Enhancement via Solid-State Shear Pulverization, Macromolecules, 41, 1905-1908, 2008.

40. Reghat M., Ghasemi I., Farno E., Azizi H., Namin P.E., and Karrabi M., Investigation on Shear Induced Isothermal Crystallization of Poly(lactic acid) Nanocomposite Based on Graphene, Soft Mater., 15, 103-112, 2017.

41. Kim H., Miura Y., and Macosko C.W., Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity, Chem. Mater., 22, 3441-3450, 2010.

42. Manafi P., Ghasemi I., Karrabi M., Azizi H., and Ehsaninamin P., Effect of Graphene Nanoplatelets on Crystallization Kinetics of Poly(lactic acid), Soft Mater., 12, 433-444, 2014.

43. Gomari S., Ghasemi I., and Esfandeh M., Effect of Polyethylene Glycol-Grafted Graphene on the Non-Isothermal Crystallization Kinetics of Poly(ethylene oxide) and Poly(ethylene oxide): Lithium Perchlorate Electrolyte Systems, Mater. Res. Bull., 83, 24-34, 2016.

44. Xu J.Z., Liang Y.Y., Huang H.D., Zhong G.J., Lei J., Chen C., and Li Z.M., Isothermal and Nonisothermal Crystallization of Isotactic Polypropylene/Graphene Oxide Nanosheet Nanocomposites, J. Polym. Res., 19, 9975, 2012.

45. Liu C., Ye S., and Feng J., Promoting the Dispersion of Graphene and Crystallization of Poly(lactic acid) with a Freezing-Dried Graphene/PEG Masterbatch, Compos. Sci. Technol., 144, 215-222, 2017.

46. Xu J.Z., Zhang Z.J., Xu H., Chen J.B., Ran R., and Li Z.M., Highly Enhanced Crystallization Kinetics of Poly(L-lactic acid) by Poly(ethylene glycol) Grafted Graphene Oxide Simultaneously as Heterogeneous Nucleation Agent and Chain Mobility Promoter, Macromolecules, 48, 4891-4900, 2015.

47. Yang Z. and Lu H., Nonisothermal Crystallization Behaviors of Poly(3-hexylthiophene)/Reduced Graphene Oxide Nanocomposites, J. Appl. Polym. Sci., 128, 802-810, 2013.

48. Tarani E., Wurm A., Schick C., Bikiaris D.N., Chrissafis K. and Vourlias G., Effect of Graphene Nanoplatelets Diameter on Non-Isothermal Crystallization Kinetics and Melting Behavior of High Density Polyethylene Nanocomposites, Thermochim. Acta, 643, 94-103, 2016.

49. Zhang F., Peng X., Yan W., Peng Z., and Shen Y., Nonisothermal Crystallization Kinetics of In Situ Nylon 6/Graphene Composites by Differential Scanning Calorimetry, J. Polym. Sci., Part B: Polym. Phys., 49, 1381-1388, 2011.

50. Zhang J., Mine M., Zhu D., and Matsuo M., Electrical and Dielectric Behaviors and Their Origins In the Three-Dimensional Polyvinyl Alcohol/MWCNT Composites with Low Percolation Threshold, Carbon, 47, 1311-1320, 2009.

51. Stankovich S., Dikin D.A., Dommett G.H.B., Kohlhaas K.M., Zimney E.J., Stach E.A., Piner R.D., Nguyen S.T., and Ruoff R.S., Graphene-based Composite Materials, Nature, 442, 282-286, 2006.

52. Zhang H.B., Zheng W.G., Yan Q., Yang Y., Wang J.W., Lu Z.H., Ji, G.Y., and Yu Z.Z., Electrically Conductive Polyethylene Terephthalate/Graphene Nanocomposites Prepared by Melt Compounding, Polymer, 51, 1191-1196, 2010.

53. Zheng D., Tang G., Zhang H.B., Yu Z.Z., Yavari F., KoratkarN., Lim S.H., and Lee M.W., In Situ Thermal Reduction of Graphene Oxide for High Electrical Conductivity and Low Percolation Threshold in Polyamide 6 Nanocomposites, Compos. Sci. Technol., 72, 284-289, 2012.

54. Ansari S. and Giannelis E.P. Functionalized Graphene Sheet-Poly(vinylidene fluoride) Conductive Nanocomposites, J. Polym. Sci., Part B: Polym. Phys., 47, 888-897, 2009.

55. Qi X.Y., Yan D., Jiang Z., Cao Y.K., Yu Z.Z., Yavari F., and Koratkar N., Enhanced Electrical Conductivity in Polystyrene Nanocomposites at Ultra-Low Graphene Content, ACS Appl. Mater. Interfaces, 3, 3130-3133, 2011.

56. Luong N.D., Hippi U., Korhonen J.T., Soininen A., Ruokolainen J., Johansson L.S., Nam J.D. and Seppälä J., Enhanced Mechanical and Electrical Properties of Polyimide Film by Graphene Sheets via In Situ Polymerization, Polymer, 52, 5237-5242, 2011.

57. Fim F. de C., Basso N.R.S., Graebin A.P., Azambuja D.S., and Galland G.B., Thermal, Electrical, and Mechanical Properties of Polyethylene-Graphene Nanocomposites Obtained by In Situ Polymerization, J. Appl. Polym. Sci., 128, 2630-2637, 2013.

58. Mao C., Zhu Y., and Jiang W., Design of Electrical Conductive Composites: Tuning the Morphology to Improve the Electrical Properties of Graphene Filled Immiscible Polymer Blends, ACS Appl. Mater. Interfaces, 4, 5281-5286, 2012.

59. Araby S., Meng Q., Zhang L., Kang H., Majewski P., Tang, Y., and Ma J., Electrically and Thermally Conductive Elastomer/Graphene Nanocomposites by Solution Mixing, Polymer, 55, 201-210, 2014.

60. Gómez-Navarro C., Burghard M., and Kern K., Elastic Properties of Chemically Derived Single Graphene Sheets, Nano Lett., 8, 2045-2049, 2008.

61. Wang P., Chong H., Zhang J., and Lu H., Constructing 3D Graphene Networks in Polymer Composites for Significantly Improved Electrical and Mechanical Properties, ACS Appl. Mater. Interfaces, 9, 22006-22017, 2017.

62. Gomari S., Esfandeh M., and Ghasemi I., All-Solid-State Flexible Nanocomposite Polymer Electrolytes Based on Poly(ethylene oxide): Lithium Perchlorate Using Functionalized Graphene, Solid State Ionics, 303, 37-46, 2017.

63. Steurer P., Wissert R., Thomann R., and Mülhaupt R., Functionalized Graphenes and Thermoplastic Nanocomposites Based Upon Expanded Graphite Oxide, Macromol. Rapid Commun., 30, 316-327, 2009.

64. Cui Y., Kundalwal S.I., and Kumar S., Gas Barrier Performance of Graphene/Polymer Nanocomposites, Carbon, 98, 313-333, 2016.

65. Al-Jabareen A., Al-Bustami H., Harel H., and Marom G., Improving the Oxygen Barrier Properties of Polyethylene Terephthalate by Graphite Nanoplatelets, J. Appl. Polym. Sci., 128, 1534-1539, 2013.

66. Shim S.H., Kim K.T., Lee J.U., and Jo W.H., Facile Method to Functionalize Graphene Oxide and Its Application to Poly(ethylene terephthalate)/Graphene Composite, ACS Appl. Mater. Interfaces, 4, 4184-4191, 2012.

67. Yang J., Bai L., Feng G., Yang X., Lv M., Zhang C., Hu H. and Wang X., Thermal Reduced Graphene Based Poly(ethylene vinyl alcohol) Nanocomposites: Enhanced Mechanical Properties, Gas Barrier, Water Resistance, and Thermal Stability, Ind. Eng. Chem. Res., 52, 16745-16754, 2013.

68. Sadasivuni K.K., Saiter A., Gautier N., Thomas S., and Grohens Y., Effect of Molecular Interactions on the Performance of Poly(isobutylene-co-isoprene)/Graphene and Clay Nanocomposites, Colloid Polym. Sci., 291, 1729-1740, 2013.

69. Kang H., Zuo K., Wang Z., Zhang L., Liu L., and Guo B., Using a Green Method to Develop Graphene Oxide/Elastomers Nanocomposites with Combination of High Barrier and Mechanical Performance, Compos. Sci. Technol., 92, 1-8, 2014.

70. Xing W., Tang M., Wu J., Huang G., Li H., Lei Z., Fu X., and Li H., Multifunctional Properties of Graphene/Rubber Nanocomposites Fabricated by a Modified Latex Compounding Method, Compos. Sci. Technol., 99, 67-74, 2014.

71. Ha H., Park J., Ando S., Kim C., Bin Nagai K., Freeman B.D., and Ellison C.J., Gas Permeation and Selectivity of Poly(dimethylsiloxane)/Graphene Oxide Composite Elastomer Membranes, J. Member. Sci., 518, 131-140, 2016.

72. Kim H., Abdala A.A., and Macosko C.W., Graphene/Polymer Nanocomposites, Macromolecules, 43, 6515-6530, 2010.

73. Xie H., Cai A., and Wang X., Thermal Diffusivity and Conductivity of Multiwalled Carbon Nanotube Arrays, Phys. Lett. A, 369, 120-123, 2007.

74. Sabzi M., Jiang L., Liu F., Ghasemi I., and Atai M., Graphene Nanoplatelets as Poly(lactic acid) Modifier: Linear Rheological Behavior and Electrical Conductivity, J. Mater. Chem. A, 1, 8253-8261, 2013.

75. Basu S., Singhi M., Satapathy B.K., and Fahim M., Dielectric, Electrical, and Rheological Characterization of Graphene-Filled Polystyrene Nanocomposites, Polym. Compos. 34, 2082-2093, 2013.

76. Zhang H.B., Zheng W.G., Yan Q., Jiang Z.G., and Yu, Z.Z., The Effect of Surface Chemistry of Graphene on Rheological and Electrical Properties of Polymethylmethacrylate Composites, Carbon, 50, 5117-5125, 2012.

77. Penu C., Hu G., Fernandez A., Marchal P., and Choplin L., Rheological and Electrical Percolation Thresholds of Carbon Nanotube/Polymer Nanocomposites, Polym. Eng. Sci., 52, 2173-2181, 2012.

78. Chaharmahali M., Hamzeh Y., Ebrahimi G., Ashori A., and Ghasemi I., Effects of Nano-Graphene on the Physico-Mechanical Properties of Bagasse/Polypropylene Composites, Polym. Bull., 71, 337-349, 2014.

79. Patole A.S., Patole S.P., Jung S.Y., Yoo J. B., An J.H. and Kim T.H., Self-assembled Graphene/Carbon Nanotube/Polystyrene Hybrid Nanocomposite by In Situ Microemulsion Polymerization, Eur. Polym. J., 48, 252-259, 2012.

80. Hsiao M.C., Ma C.C. M., Chiang J.C., Ho K.K., Chou T.Y., Xie X., Tsai C.H., Chang, L.H., and Hsieh C.K., Thermally Conductive and Electrically Insulating Epoxy Nanocomposites with Thermally Reduced Graphene Oxide-Silica Hybrid Nanosheets, Nanoscale, 5, 5863-5871, 2013.

81. Li J., Guo S., Zhai Y., and Wang E., High-sensitivity Determination of Lead and Cadmium Based on the Nafion-Graphene Composite Film, Anal. Chim. Acta, 649, 196-201, 2009.

82. Al-Mashat L., Shin K., Kalantar-zadeh K., Plessis J.D., Han S.H., Kojima R.W., Kaner R.B., Li D., Gou X., and Ippolito S.J., Graphene/Polyaniline Nanocomposite for Hydrogen Sensing, J. Phys. Chem. C, 114, 16168-16173, 2010.

83. Konwer S., Guha A.K., and Dolui S.K., Graphene Oxide-Filled Conducting Polyaniline Composites as Methanol-Sensing Materials, J. Mater. Sci., 48, 1729-1739, 2013.

84. Bai H., Sheng K., Zhang P., Li C., and Shi G., Graphene Oxide/Conducting Polymer Composite Hydrogels, J. Mater. Chem., 21, 18653-18658, 2011.

85. Sahoo S., Dhibar S., Hatui G., Bhattacharya P., and Das C.K., Graphene/Polypyrrole Nanofiber Nanocomposite as Electrode Material for Electrochemical Supercapacitor, Polymer, 54, 1033-1042, 2013.

86. Gupta A., Akhtar A.J., and Saha S.K., In-Situ Growth of P3HT/Graphene Composites for Supercapacitor Application, Mater. Chem. Phys., 140, 616-621, 2013.

87. Sookhakian M., Amin Y.M., Baradaran S., Tajabadi M.T., Golsheikh A.M., and Basirun W.J., A Layer-by-Layer Assembled Graphene/Zinc Sulfide/Polypyrrole Thin-Film Electrode via Electrophoretic Deposition for Solar Cells, Thin Solid Films, 552, 204-211, 2014.

88. Yue G., Wu J., Xiao Y., Lin J., Huang M., Lan Z., and Fan L., Functionalized Graphene/Poly(3,4-ethylenedioxythiophene): Polystyrenesulfonate as Counter Electrode Catalyst for Dye-Sensitized Solar Cells, Energy, 54, 315-321, 2013.

89. Liu Y., Wang W., Gu L., Wang Y., Ying Y., Mao Y., Sun L., and Peng X., Flexible CuO Nanosheets/Reduced-Graphene Oxide Composite Paper: Binder-Free Anode for High-Performance Lithium-Ion Batteries, ACS Appl. Mater. Interfaces, 5, 9850-9855, 2013.

90. Liang J., Zhao Y., Guo L., and Li L., Flexible Free-Standing Graphene/SnO2 Nanocomposites Paper for Li-Ion Battery, ACS Appl. Mater. Interfaces, 4, 5742-5748, 2012.

91. Zhao Y., Huang Y., and Wang Q., Graphene Supported Poly-pyrrole (PPY)/Li2SnO3 Ternary Composites as Anode Materials for Lithium Ion Batteries, Ceram. Int. 39, 6861–6866, 2013.

92. Lee S. and Oh E.S., Performance Enhancement of a Lithium Ion Battery by Incorporation of a Graphene/Polyvinylidene Fluoride Conductive Adhesive layer between the Current Collector and the Active Material Layer, J. Power Sources, 244, 721-725, 2013.

93. Platero E., Fernandez M.E., Bonelli P.R., and Cukierman A.L., Graphene Oxide/Alginate Beads as Adsorbents: Influence of the Load and the Drying Method on Their Physicochemical-Mechanical Properties and Adsorptive Performance, J. Colloid Interface Sci., 491, 1-12, 2017.

94. Liu Z., Robinson J.T., Sun X., and Dai H., PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs, J. Am. Chem. Soc., 130, 10876-10877, 2008.

95. Sayyar S., Murray E., Thompson B.C., Gambhir S., Officer D.L., and Wallace G.G., Covalently Linked Biocompatible Graphene/Polycaprolactone Composites for Tissue Engineering, Carbon, 52, 296-304, 2013.