مروری بر داربست‌های نانولیفی رسانا برای کاربردهای مهندسی بافت

نوع مقاله: پژوهشی

نویسندگان

تهران، دانشگاه صنعتی امیرکبیر، دانشکده مهندسی زیست‌پزشکی، صندوق پستی 4413-15875

چکیده

طراحی داربست زیست‌سازگاری که خواص مکانیکی، الکتریکی، شیمیایی و شکل‌شناسی ماتریس برون‌سلولی بافت هدف را به‌خوبی تقلید کند، از چالش‌های اصلی در تنظیم رفتارهای سلولی است. بدین دلیل، داربست‌های رسانا برای مهندسی بافت‌هایی همچون عصب، استخوان و قلب که فعال الکتریکی هستند، بسیار مورد توجه قرار گرفته‌اند و ابزار مناسبی برای انتقال سیگنال الکتریکی لازم برای تنظیم رفتار سلول‌های این بافت‌ها به‌شمار می‌آیند. از طرفی، نانوساختارهای پلیمری رسانا به موضوع مورد علاقه بسیاری از پژوهشگران تبدیل شده است. زیرا، از ترکیب مواد آلی رسانا و نانوساختارها، مواد کارکردی جدیدی با خواص فیزیکی-شیمیایی منحصر به‌فرد حاصل می‌شود که می‌توانند هم‌زمان خواص شکل‌شناسی و الکتریکی ماتریس برون‌سلولی را تقلید کنند. در این راستا، پژوهشگران مختلف درباره طراحی داربست‌های رسانا با درنظرگرفتن خواص شکل‌شناسی به پژوهش پرداخته‌اند. نانوالیاف پلیمری رسانا با استفاده از مواد رسانای مختلف و روش‌های گوناگون تهیه می‌شوند. پلیمرهای رسانای ذاتی، مواد کربنی مانند گرافن و نانولوله‌های کربن و نانوذرات فلزی مانند طلا رایج‌ترین موادی هستند که برای تهیه نانوالیاف پلیمری رسانا به‌کار گرفته می‌شوند. ریسندگی پلیمر رسانا یا آمیخته پلیمر حامل و عامل رسانا (الکتروریسی و ترریسی)، پوشش‌دهی عامل رسانا روی نانوالیاف قالب (پلیمرشدن شیمیایی درجا به روش‌های الکتروشیمیایی و برمیسلی و فاز بخار، پوشش‌دهی مواد کربنی و فلزی روی نانوالیاف با غوطه‌وری، پوشش‌دهی بخار فلز روی نانوالیاف) و ساخت بدون قالب نانوالیاف رسانا (پلیمرشدن در فصل مشترک و الکتروشیمیایی) از جمله روش‌های تهیه داربست‌های نانولیفی رسانا هستند که در این مقاله بحث و بررسی شده و مزایا و معایب آن‌ها با یکدیگر مقایسه شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Conductive Nanofibrous Scaffolds for Tissue Engineering Applications: A Review

نویسندگان [English]

  • Zohreh Daraei Nejad
  • Iman Shabani
Department of Biomedical Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
چکیده [English]

Designing a biocompatible scaffold that mimics the mechanical, electrical, chemical, and topographical properties of extracellular matrix of the target tissue is one of the main challenges in regulating cellular behaviors. For this reason, conductive scaffolds are very much considered in the engineering of electroactive tissues such as nerve, bone, and heart, and are the ideal tools for transmitting the electrical signals to these tissues and regulating their cells behaviors. On the other hand, nanostructures of conductive polymers have become a topic of interest to many researchers, because by the combination of conductivity and nanostructures, new functional materials are obtained with unique physicochemical properties, which can simultaneously simulate physical and electrical properties of the extracellular matrix. In this regard, several researchers have been working on the design of conductive scaffolds with the consideration of topographical properties. Conductive polymeric nanofibers are prepared using various conductive materials and different methods. Intrinsically conductive polymers, carbon materials such as graphene and carbon nanotubes, and metallic nanoparticles such as gold are the most common materials used for the production of conductive polymer-based nanofibers. This review covers the spinning of conductive polymer or the blend of carrier polymer and conductive agents by electrospinning and wet spinning, conductive agent deposition onto template nanofibers (in situ chemical polymerization, electrochemical polymerization, admicellar polymerization, vapor-phase polymerization, carbon and metal coating on nanofibers through immersion, coating of metal vapor on nanofibers), and template-free synthesis (interface polymerization, electrochemical polymerization) among methods of fabrication of conductive nanofibrous scaffolds and finally their advantages and disadvantages are compared together.

کلیدواژه‌ها [English]

  • conductive nanofibers
  • conductive polymers
  • carbon nanomaterials
  • gold nanoparticles
  • tissue engineering

1.     Rosso F., Giordano A., Barbarisi M., and Barbarisi A., From Cell–ECM Interactions to Tissue Engineering, J. Cellular Physiol., 199, 174-180, 2004.

2.     Levin M. and Stevenson C.G., Regulation of Cell Behavior and Tissue Patterning by Bioelectrical Signals: Challenges and Opportunities for Biomedical Engineering, Annu. Rev. Biomed. Eng.,14, 295-323, 2012.

3.     Kim D.H., Provenzano P.P., Smith C.L., and Levchenko A., Matrix Nanotopography as a Regulator of Cell Function, J. Cell Biolog.,197, 351-360, 2012.

4.     Janmey P.A. and Mcculloch C.A., Cell Mechanics: Integrating Cell Responses to Mechanical Stimuli, Annu. Rev. Biomed. Eng., 9, 1-34, 2007.

5.     He L., Si G., Huang J., Samuel A.D., and Perrimon N., Mechanical Regulation of Stem-Cell Differentiation by the Stretch-Activated Piezo Channel, Nature,555, 103, 2018.

6.     Barthes J., Özçelik H., Hindié M., Ndreu-Halili A., Hasan A., and Vrana N., Cell Microenvironment Engineering and Monitoring for Tissue Engineering and Regenerative Medicine: The Recent Advances, Biomed. Res. Int., 2014, 921905-921905, 2014.

7.     Mathews J. and Levin M., The Body Electric 2.0: Recent Advances in Developmental Bioelectricity for Regenerative and Synthetic Bioengineering, Current Opinion Biotechnol., 52, 134-144, 2018.

8.     Mccaig C.D., Rajnicek  A.M., Song B., and Zhao M., Controlling Cell Behavior Electrically: Current Views and Future Potential, Physiolog. Rev., 85, 943-978, 2005.

9.     Balint R., Cassidy N.J., and Cartmell S.H., Electrical Stimulation: A Novel Tool for Tissue Engineering, Tissue Eng., Part B: Rev., 19, 48-57, 2012.

10.   Pires F., Ferreira Q., Rodrigues C.A., Morgado J., and Ferreira F.C., Neural Stem Cell Differentiation by Electrical Stimulation Using a Cross-Linked PEDOT Substrate: Expanding the Use of Biocompatible Conjugated Conductive Polymers for Neural Tissue Engineering, Biochim. Biophys. Acta, 1850, 1158-1168, 2015.

11.   Hardy J.G., Geissler S.A., Aguilar D., Villancio-Wolter M.K., Mouser D.J., Sukhavasi R.C., Cornelison R.C., Tien L.W., Preda R.C., and Hayden R.S., Instructive Conductive 3D Silk Foam-Based Bone Tissue Scaffolds Enable Electrical Stimulation of Stem Cells for Enhanced Osteogenic Differentiation, Macromol. Bioscie., 15, 1490-1496, 2015.

12.   Ito A., Yamamoto Y., Sato M., Ikeda K., Yamamoto M., Fujita H., Nagamori E., Kawabe Y., and Kamihira M., Induction of Functional Tissue-Engineered Skeletal Muscle Constructs by Defined Electrical Stimulation, Scientific Reports, 4, 4781, 2014.

13.   Mohammadi Amirabad L., Massumi M., Shamsara M., Shabani I., Amari A., Mossahebi Mohammadi M., Hosseinzadeh S., Vakilian S., Steinbach S.K., and Khorramizadeh M.R., Enhanced Cardiac Differentiation of Human Cardiovascular Disease Patient-Specific Induced Pluripotent Stem Cells by Applying Unidirectional Electrical Pulses Using Aligned Electroactive Nanofibrous Scaffolds, ACS Appl. Mater. Interfaces, 9, 6849-6864, 2017.

14.   Wang Y., Rouabhia M., and Zhang Z., Pulsed Electrical Stimulation Benefits Wound Healing by Activating Skin Fibroblasts through the TGFβ1/ERFK/NF-ΚB Axis, Biochim. Biophys. Acta,1860, 1551-1559, 2016.

15.   Kim I.S., Song J.K., Zhang Y.L., Lee T.H., Cho T.H., Song Y.M., Kim D. K., Kim S.J. and Hwang S.J., Biphasic Electric Current Stimulates Proliferation and Induces Vegf Production in Osteoblasts, Biochim. Biophys. Acta,1763, 907-916, 2006.

16.   Xu J., Wang W., Clark C., and Brighton C., Signal Transduction in Electrically Stimulated Articular Chondrocytes Involves Translocation of Extracellular Calcium through Voltage-Gated Channels, Osteoarth. Cartilage,17, 397-405, 2009.

17.   Lee J.Y., Electrically Conducting Polymer-Based Nanofibrous Scaffolds for Tissue Engineering Applications, Polym. Rev., 53, 443-459, 2013.

18.   Shabani I., Haddadi-Asl V., Seyedjafari E., and Soleimani M., Cellular Infiltration on Nanofibrous Scaffolds Using a Modified Electrospinning Technique, Biochem. Biophys. Res. Commun., 423, 50-54, 2012.

19.   Hashemi S.M., Soudi S., Shabani I., Naderi M., and Soleimani M., The Promotion of Stemness and Pluripotency Following Feeder-Free Culture of Embryonic Stem Cells on Collagen-Grafted 3-Dimensional Nanofibrous Scaffold, Biomaterials, 32, 7363-7374, 2011.

20.   Shabani I., Haddadi-Asl V., Soleimani M., Seyedjafari E., Babaeijandaghi F., and Ahmadbeigi N., Enhanced Infiltration and Biomineralization of Stem Cells on Collagen-Grafted Three-Dimensional Nanofibers, Tissue Eng. Part A, 17, 1209-1218, 2011.

21.   Kabiri M., Soleimani M., Shabani I., Futrega K., Ghaemi N., Ahvaz H.H., Elahi E., and Doran M.R., Neural Differentiation of Mouse Embryonic Stem Cells on Conductive Nanofiber Scaffolds, Biotechnol. Lett., 34, 1357-1365, 2012.

22.   Nisbet D., Forsythe J.S., Shen W., Finkelstein D., and Horne M.K., Review Paper: A Review of the Cellular Response on Electrospun Nanofibers for Tissue Engineering, J. Biomater. Appl., 24, 7-29, 2009.

23.   Wang X., Ding B., and Li B., Biomimetic Electrospun Nanofibrous Structures for Tissue Engineering, Mater. Today, 16, 229-241, 2013.

24.   Soleimani M., Nadri S., and Shabani I., Neurogenic Differentiation of Human Conjunctiva Mesenchymal Stem Cells on a Nanofibrous Scaffold, Int. J. Dev. Biol., 54, 1295-1300, 2010.

25.   Norouzi M., Soleimani M., Shabani I., Atyabi F., Ahvaz H.H., and Rashidi A., Protein Encapsulated in Electrospun Nanofibrous Scaffolds for Tissue Engineering Applications, Polym. Int., 62, 1250-1256, 2013.

26.   Ji W., Sun Y., Yang F., Van Den Beucken J.J., Fan M., Chen Z., and Jansen J.A., Bioactive Electrospun Scaffolds Delivering Growth Factors and Genes for Tissue Engineering Applications, Pharmaceut. Res., 28, 1259-1272, 2011.

27.   Son Y.J., Kim W.J., and Yoo H.S., Therapeutic Applications of Electrospun Nanofibers for Drug Delivery Systems, Arch. Pharm. Res.,37, 69-78, 2014.

28.   Vakilian S., Mashayekhan S., Shabani I., Khorashadizadeh M., Fallah A., and Soleimani M., Structural Stability and Sustained Release of Protein from a Multilayer Nanofiber/Nanoparticle Composite, Int. J. Biol. Macromol., 75, 248-257, 2015.

29.   Yanılmaz M. and Sarac A.S., A Review: Effect of Conductive Polymers on the Conductivities of Electrospun Mats, Text. Res. J.,84, 1325-1342, 2014.

30.   Long Y.Z., Li M.M., Gu C., Wan M., Duvail J.L., Liu Z., and Fan Z., Recent Advances in Synthesis, Physical Properties and Applications of Conducting Polymer Nanotubes and Nanofibers, Prog. Polym. Sci., 36, 1415-1442, 2011.

31.   Hoffman-Kim D., Mitchel J.A., and Bellamkonda R.V., Topography, Cell Response, and Nerve Regeneration, Annu. Rev. Biomed. Eng., 12, 203-231, 2010.

32.   Patton A.J., Poole-Warren L.A., and Green R.A., Mechanisms for Imparting Conductivity to Nonconductive Polymeric Biomaterials, Macromol. Biosci.,16, 1103-1121, 2016.

33.   Balint R., Cassidy N.J., and Cartmell S.H., Conductive Polymers: Towards a Smart Biomaterial for Tissue Engineering, Acta Biomaterialia, 10, 2341-2353, 2014.

34.   Tandon B., Magaz A., Balint R., Blaker J.J., and Cartmell S.H., Electroactive Biomaterials: Vehicles for Controlled Delivery of Therapeutic Agents for Drug Delivery and Tissue Regeneration, Adv. Drug Deliv. Rev.,  129, 148-168, 2018.

35.   Ning C., Zhou Z., Tan G., Zhu Y., and Mao C., Electroactive Polymers for Tissue Regeneration: Developments and Perspectives, Prog. Polym. Sci.,  81, 144-162, 2018.

36.   Elschner A., Kirchmeyer S., Lovenich W., Merker U., and Reuter K., Pedot: Principles and Applications of an Intrinsically Conductive Polymer, 1st ed., CRC, Boca Raton, 377, 2010.

37.   Ghasemi-Mobarakeh L., Prabhakaran M.P., Morshed M., Nasr-Esfahani M.H., Baharvand H., Kiani S., Al-Deyab S.S., and Ramakrishna S., Application of Conductive Polymers, Scaffolds and Electrical Stimulation for Nerve Tissue Engineering, J. Tissue Eng. Regen. Med., 5, e17-e35, 2011.

38.   Guimard N.K., Gomez N., and Schmidt C.E., Conducting Polymers in Biomedical Engineering, Prog. Polym. Sci., 32, 876-921, 2007.

39.   Ravichandran R., Sundarrajan S., Venugopal J.R., Mukherjee S., and Ramakrishna S., Applications of Conducting Polymers and Their Issues in Biomedical Engineering, J. Royal Soc. Interface,7, S559-S579, 2010.

40.   Biomedical Applications of Electroactive Polymer Actuators, Carpi F. and Smela E. (Eds.), John Wiley and Sons, United States, 463, 2009.

41.   Schmidt C.E., Shastri V.R., Vacanti J.P., and Langer R., Stimulation of Neurite Outgrowth Using an Electrically Conducting Polymer, Proceedings of the National Academy of Sciences, 94, 8948-8953, 1997.

42.   Durgam H., Sapp S., Deister C., Khaing Z., Chang E., Luebben S., and Schmidt C.E., Novel Degradable Copolymers of Polypyrrole Support Cell Proliferation and Enhance Neurite out-Growth with Electrical Stimulation, J. Biomater. Sci., Polym. Ed., 21, 1265-1282, 2010.

43.   Shi G., Rouabhia M., Wang Z., Dao L.H., and Zhang Z., A Novel Electrically Conductive and Biodegradable Composite Made of Polypyrrole Nanoparticles and Polylactide, Biomaterials, 25, 2477-2488, 2004.

44.   Rivers T.J., Hudson T.W., and Schmidt C.E., Synthesis of a Novel, Biodegradable Electrically Conducting Polymer for Biomedical Applications, Adv. Funct. Mater.,12, 33-37, 2002.

45.   Khorshidi S. and Karkhaneh A., Formation of Three-Dimensionality in Polyaniline-Based Nanofibers: A Highly Conductive Permeable Scaffold for Stem Cells Residence, Int. J. Polym. Mater. Polym. Biomat.,65, 629-635, 2016.

46.   Jin L., Feng Z.Q., Zhu M.L., Wang T., Leach M.K., and Jiang Q., A Novel Fluffy Conductive Polypyrrole Nano-Layer Coated PLLA Fibrous Scaffold for Nerve Tissue Engineering, J. Biomed. Nanotechnol., 8, 779-785, 2012.

47.   Castagna R., Tunesi M., Saglio B., Della Pina C., Sironi A., Albani D., Bertarelli C., and Falletta E., Ultrathin Electrospun PLNI Nanofibers for Neuronal Tissue Engineering, J. Appl. Polym. Sci., 133, 1-10, 2016.

48.   Hardy J. and Schmidt C.E., Electroactive Polymeric Scaffolds and Method for Delivering Nerve Growth Factor to Nerve Tissue, US Pat. Application US 14/491,686, 2016.

49.   Kaner R.B., Shin K., and Tran H.H.D., Synthesis of Conducting Polymer Nanofibers Using an Oligomer of a Monomer as an Initiator, US Pat., 8, 101,709, 2012.

50.   Nezakati T., Seifalian A., Tan A., and Seifalian A.M., Conductive Polymers: Opportunities and Challenges in Biomedical Applications, Chem. Rev., 118, 6766-6843, 2018.

51.   Mozafari M., Mehraien M., Vashaee D., and Tayebi L., Electroconductive Nanocomposite Scaffolds: A New Strategy into Tissue Engineering and Regenerative Medicine, Nanocomposites-New Trends and Developments, 1st ed., IntechOpen, 392-369, 2012.

52.   Hardy J.G., Lee J.Y., and Schmidt C.E., Biomimetic Conducting Polymer-Based Tissue Scaffolds, Curr. Opim. Biotech., 24, 847-854, 2013.

53.   Zou Y., Qin J., Huang Z., Yin G., Pu X., and He D., Fabrication of Aligned Conducting PPy-PLLA Fiber Films and Their Electrically Controlled Guidance and Orientation for Neurites, ACS Appl. Mater. Interfaces, 8, 12576-12582, 2016.

54.   Bendrea A.D., Cianga L., and Cianga I., Review Paper: Progress in the Field of Conducting Polymers for Tissue Engineering Applications, J. Biomater. Applicat., 26, 3-84, 2011.

55.   Olayo R., Ríos C., Salgado-Ceballos H., Cruz G.J., Morales J., Olayo M.G., Alcaraz-Zubeldia M., Alvarez A.L., Mondragon R., and Morales A., Tissue Spinal Cord Response in Rats after Implants of Polypyrrole and Polyethylene Glycol Obtained by Plasma, J. Mater. Sci., Mater. Med., 19, 817-826, 2008.

56.   Tian L., Prabhakaran M.P., Hu J., Chen M., Besenbacher F., and Ramakrishna S., Synergistic Effect of Topography, Surface Chemistry and Conductivity of the Electrospun Nanofibrous Scaffold on Cellular Response of PC12 Cells, Colloids Surf. B, 145, 420-429, 2016.

57.   Björninen M., Siljander A., Pelto J., Hyttinen J., Kellomäki M., Miettinen S., Seppänen R., and Haimi S., Comparison of Chondroitin Sulfate and Hyaluronic Acid Doped Conductive Polypyrrole Films for Adipose Stem Cells, Ann. Biomed. Eng., 42, 1889-1900, 2014.

58.   Qazi T.H., Rai R., and Boccaccini A.R., Tissue Engineering of Electrically Responsive Tissues Using Polyaniline Based Polymers: A Review, Biomaterials, 35, 9068-9086, 2014.

59.   Kamalesh S., Tan P., Wang J., Lee T., Kang E.T. and Wang C.H., Biocompatibility of Electroactive Polymers in Tissues, J. Biomed. Mater. Res., 52, 467-478, 2000.

60.   Humpolicek P., Kasparkova V., Saha P., and Stejskal J., Biocompatibility of Polyaniline, Synth. Metal., 162, 722-727, 2012.

61.   Abidian M.R., Kim D.H., and Martin D.C., Conducting-Polymer Nanotubes for Controlled Drug Release, Adv. Mater., 18, 405-409, 2006.

62.   Del Valle L., Aradilla D., Oliver R., Sepulcre F., Gamez A., Armelin E., Alemán C., and Estrany F., Cellular Adhesion and Proliferation on Poly(3,4-ethylenedioxythiophene): Benefits in the Electroactivity of the Conducting Polymer, Eur. Polym. J.,43, 2342-2349, 2007.

63.   Shahinpoor M., Bar-Cohen Y., Simpson J., and Smith J., Ionic Polymer-Metal Composites (IPMCS) as Biomimetic Sensors, Actuators and Artificial Muscles-A Review, Smart Mater. Struct.,7, R15, 1998.

64.   Fraczek-Szczypta A., Carbon Nanomaterials for Nerve Tissue Stimulation and Regeneration, Mater. Sci. Eng., C, 34, 35-49, 2014.

65.   Serrano M.C., Gutiérrez M.C., and Del Monte F., Role of Polymers in the Design of 3D Carbon Nanotube-Based Scaffolds for Biomedical Applications, Prog. Polym. Sci., 39, 1448-1471, 2014.

66.   Gupta P., Sharan S., Roy P., and Lahiri D., Aligned Carbon Nanotube Reinforced Polymeric Scaffolds with Electrical Cues for Neural Tissue Regeneration, Carbon, 95, 715-724, 2015.

67.   Wang W., Itoh S., Yamamoto N., Okawa A., Nagai A., and Yamashita K., Enhancement of Nerve Regeneration Along a Chitosan Nanofiber Mesh Tube on Which Electrically Polarized Β-Tricalcium Phosphate Particles are Immobilized, Acta Biomaterialia, 6, 4027-4033, 2010.

68.   Kaur G., Adhikari R., Cass P., Bown M., and Gunatillake P., Electrically Conductive Polymers and Composites for Biomedical Applications, RSC Adv., 5, 37553-37567, 2015.

69.   Jin G.Z., Kim M., Shin U.S. and Kim H.W., Neurite Outgrowth of Dorsal Root Ganglia Neurons Is Enhanced on Aligned Nanofibrous Biopolymer Scaffold with Carbon Nanotube Coating, Neurosci. Lett., 501, 10-14, 2011.

70.   Mooney E., Mackle J.N., Blond D.J.P., O’cearbhaill E., Shaw G., Blau W.J., Barry F.P., Barron V., and Murphy J.M., The Electrical Stimulation of Carbon Nanotubes to Provide a Cardiomimetic Cue to Mscs, Biomaterials, 33, 6132-6139, 2012.

71.   Cha C., Shin S.R., Annabi N., Dokmeci M.R., and Khademhosseini A., Carbon-Based Nanomaterials: Multifunctional Materials for Biomedical Engineering, ACS Nano,7, 2891-2897, 2013.

72.   Wang Z., Shen H., Song S., Zhang L., Chen W., Dai J., and Zhang Z., Graphene Oxide Incorporated PLGA Nanofibrous Scaffold for Solid Phase Gene Delivery into Mesenchymal Stem Cells, J. Nanosci. Nanotechnol., 18, 2286-2293, 2018.

73.   De Sousa M., Visani De Luna L.A., Fonseca L.C., Giorgio S., and Alves O.L., Folic-Acid-Functionalized Graphene Oxide Nanocarrier: Synthetic Approaches, Characterization, Drug Delivery Study, and Antitumor Screening, ACS Appl. Nano Mater., 1, 922-932, 2018.

74.   Chaudhuri B., Bhadra D., Moroni L., and Pramanik K., Myoblast Differentiation of Human Mesenchymal Stem Cells on Graphene Oxide and Electrospun Graphene Oxide-Polymer Composite Fibrous Meshes: Importance of Graphene Oxide Conductivity and Dielectric Constant on Their Biocompatibility, Biofabrication, 7, 015009, 2015.

75.   Mahmoudifard M., Soleimani M., Hatamie S., Zamanlui S., Ranjbarvan P., Vossoughi M., and Hosseinzadeh S., The Different Fate of Satellite Cells on Conductive Composite Electrospun Nanofibers with Graphene and Graphene Oxide Nanosheets, Biomed. Mater., 11, 025006, 2016.

76.   Akhavan O., Graphene Scaffolds in Progressive Nanotechnology/Stem Cell-Based Tissue Engineering of the Nervous System, J. Mater. Chem. B, 4, 3169-3190, 2016.

77.   Nalvuran H., Elçin A.E., and Elçin Y.M., Nanofibrous Silk Fibroin/Reduced Graphene Oxide Scaffolds for Tissue Engineering and Cell Culture Applications, Int. J. Biolog. Macromol., 114, 77-84, 2018.

78.   Zare Y. and Shabani I., Polymer/Metal Nanocomposites for Biomedical Applications, Mater. Sci. Eng., C, 60, 195-203, 2016.

79.   Vial S., Reis R.L., and Oliveira J.M., Recent Advances Using Gold Nanoparticles as a Promising Multimodal Tool for Tissue Engineering and Regenerative Medicine, Curr. Opin. Solid State Mater. Sci., 21, 92-112, 2017.

80.   Sridhar S., Venugopal J.R., Sridhar R., and Ramakrishna S., Cardiogenic Differentiation of Mesenchymal Stem Cells with Gold Nanoparticle Loaded Functionalized Nanofibers, Colloids Surfaces B: Biointerfaces,134, 346-354, 2015.

81.   Baranes K., Shevach M., Shefi O., and Dvir T., Gold Nanoparticle-Decorated Scaffolds Promote Neuronal Differentiation and Maturation, Nano letters, 16, 2916-2920, 2015.

82.   Demir U.S., Shahbazi R., Calamak S., Ozturk S., Gultekinoglu M., and Ulubayram K., Gold Nano-Decorated Aligned Polyurethane Nanofibers for Enhancement of Neurite Outgrowth and Elongation, J. Biomed. Mater. Res., Part A, 106, 1604-1613, 2018.

83.   Lee D., Heo D.N., Lee S.J., Heo M., Kim J., Choi S., Park H.K., Park Y.G., Lim H.N., and Kwon I.K., Poly(lactide-co-glycolide) Nanofibrous Scaffolds Chemically Coated with Gold-Nanoparticles as Osteoinductive Agents for Osteogenesis, Appl. Surface Sci., 432, 300-307, 2018.

84.   Guo B. and Ma P.X., Conducting Polymers for Tissue Engineering, Biomacromolecules, 19, 1764-1782, 2018.

85.   Lu X., Zhang W., Wang C., Wen T.C., and Wei Y., One-Dimensional Conducting Polymer Nanocomposites: Synthesis, Properties and Applications, Prog. Polym. Sci.,36, 671-712, 2011.

86.   Shabani I., Haddadi-Asl V., Seyedjafari E., Babaeijandaghi F., and Soleimani M., Improved Infiltration of Stem Cells on Electrospun Nanofibers, Biochem. Biophys. Res., Commun.,382, 129-133, 2009.

87.   Teo W. and Ramakrishna S., A Review on Electrospinning Design and Nanofibre Assemblies, Nanotechnology, 17, R89, 2006.

88.   Pillay V., Dott C., Choonara Y., Tyagi C., Tomar L., Kumar P., Toit L. and Ndesendo V., A Review of the Effect of Processing Variables on the Fabrication of Electro Spun Nano Fibers for Drug Delivery Applications, J. Nanomaterials, 2013, (DOI:org/10.1155/2013/789289), 2013.

89.   Skotheim T.A. and Reynolds J., Conjugated Polymers: Theory, Synthesis, Properties, and Characterization, 3rd ed., CRC, Boca Raton, 1024, 2006.

90.   Prabhakaran M.P., Ghasemi-Mobarakeh L., Jin G., and Ramakrishna S., Electrospun Conducting Polymer Nanofibers and Electrical Stimulation of Nerve Stem Cells, J. Biosci. Bioeng., 112, 501-507, 2011.

91.   Zhang J., Qiu K., Sun B., Fang J., Zhang K., Hany E.H., Al-Deyab S.S., and Mo X., The Aligned Core–Sheath Nanofibers with Electrical Conductivity for Neural Tissue Engineering, J. Mater. Chem., B, 2, 7945-7954, 2014.

92.   Ghasemi-Mobarakeh L., Prabhakaran M.P., Morshed M., Nasr-Esfahani M.H., and Ramakrishna S., Electrical Stimulation of Nerve Cells Using Conductive Nanofibrous Scaffolds for Nerve Tissue Engineering, Tissue Eng. Part A, 15, 3605-3619, 2009.

93.   Pant H.R., Pokharel P., Joshi M.K., Adhikari S., Kim H.J., Park C.H., and Kim C.S., Processing and Characterization of Electrospun Graphene Oxide/Polyurethane Composite Nanofibers for Stent Coating, Chem. Eng. J., 270, 336-342, 2015.

94.   Kharaziha M., Shin S.R., Nikkhah M., Topkaya S.N., Masoumi N., Annabi N., Dokmeci M.R., and Khademhosseini A., Tough and Flexible CNT-Polymeric Hybrid Scaffolds for Engineering Cardiac Constructs, Biomaterials, 35, 7346-7354, 2014.

95.   Sheikh F.A., Macossay J., Cantu T., Zhang X., Hassan M.S., Salinas M.E., Farhangi C.S., Ahmad H., Kim H. and Bowlin G.L., Imaging, Spectroscopy, Mechanical, Alignment and Biocompatibility Studies of Electrospun Medical Grade Polyurethane (Carbothane™ 3575a) Nanofibers and Composite Nanofibers Containing Multiwalled Carbon Nanotubes, J. Mechanic. Behavior Biomed. Mater., 41, 189-198, 2015.

96.   Ravichandran R., Sridhar R., Venugopal J.R., Sundarrajan S., Mukherjee S., and Ramakrishna S., Gold Nanoparticle Loaded Hybrid Nanofibers for Cardiogenic Differentiation of Stem Cells for Infarcted Myocardium Regeneration, Macromol. Biosci., 14, 515-525, 2014.

97.   Wei M., Lee J., Kang B., and Mead J., Preparation of Core-Sheath Nanofibers from Conducting Polymer Blends, Macromol. Rapid Commun., 26, 1127-1132, 2005.

98.   Zhang Y. and Rutledge G.C., Electrical Conductivity of Electrospun Polyaniline and Polyaniline-Blend Fibers and Mats, Macromolecules, 45, 4238-4246, 2012.

99.   Jalili R., Razal J.M., Innis P.C., and Wallace G.G., One-Step Wet-Spinning Process of Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) Fibers and the Origin of Higher Electrical Conductivity, Adv. Funct. Mater., 21, 3363-3370, 2011.

100. Okuzaki H., Harashina Y., and Yan H., Highly Conductive PEDOT/PSS Microfibers Fabricated by Wet-Spinning and Dip-Treatment in Ethylene Glycol, Eur. Polym. J., 45, 256-261, 2009.

101. Esrafilzadeh D., Jalili R., Liu X., Gilmore K.J., Razal J.M., Moulton S.E., and Wallace G.G., A Novel and Facile Approach to Fabricate a Conductive and Biomimetic Fibrous Platform with Sub-Micron and Micron Features, J. Mater. Chem. B, 4, 1056-1063, 2016.

102. Zhou J., Li E. Q., Li R., Xu X., Ventura I.A., Moussawi A., Anjum D.H., Hedhili M.N., Smilgies D.M., and Lubineau G., Semi-Metallic, Strong and Stretchable Wet-Spun Conjugated Polymer Microfibers, J. Mater. Chem. C, 3, 2528-2538, 2015.

103. Wang X.Y., Feng G.Y., Li M.J., and Ge M.Q.J.P.B., Effect of PEDOT:PSS Content on Structure and Properties of Pedot: Pss/Poly(vinyl alcohol) Composite Fiber, Polym. Bull., 76, 2097-2111, 2019.

104. Sudwilai T., Ng J.J., Boonkrai C., Israsena N., Chuangchote S., and Supaphol P., Polypyrrole-Coated Electrospun Poly(lactic acid) Fibrous Scaffold: Effects of Coating on Electrical Conductivity and Neural Cell Growth, J. Biomater. Sci., Polym. Ed., 25, 1240-1252, 2014.

105. Thunberg J., Kalogeropoulos T., Kuzmenko V., Hägg D., Johannesson S., Westman G., and Gatenholm P., In Situ Synthesis of Conductive Polypyrrole on Electrospun Cellulose Nanofibers: Scaffold for Neural Tissue Engineering, Cellulose, 22, 1459-1467, 2015.

106. Yang A., Huang Z., Yin G., and Pu X., Fabrication of Aligned, Porous and Conductive Fibers and Their Effects on Cell Adhesion and Guidance, Colloids and Surfaces B: Biointerfaces, 134, 469-474, 2015.

107. Gan J.K., Lim Y.S., Pandikumar A., Huang N.M., and Lim H.N., Graphene/Polypyrrole-Coated Carbon Nanofiber Core-Shell Architecture Electrode for Electrochemical Capacitors, RSC Adv., 5, 12692-12699, 2015.

108. Laforgue A. and Robitaille L., Deposition of Ultrathin Coatings of Polypyrrole and Poly(3,4-ethylenedioxythiophene) onto Electrospun Nanofibers Using a Vapor-Phase Polymerization Method, Chem. Mater., 22, 2474-2480, 2010.

109. Lu M., Xie R., Liu Z., Zhao Z., Xu H., and Mao Z., Enhancement in Electrical Conductive Property of Polypyrrole-Coated Cotton Fabrics Using Cationic Surfactant, J. Appl. Polym. Sci., 133,  2016. DOI: org/10.1002/app.43601

110. Jalili-Firoozinezhad S., Moghadam M.H.M., Ghanian M.H., Ashtiani M.K., Alimadadi H., Baharvand H., Martin I., and Scherberich A., Polycaprolactone-Templated Reduced-Graphene Oxide Liquid Crystal Nanofibers Towards Biomedical Applications, RSC Adv., 7, 39628-39634, 2017.

111. Huang J. and Kaner R.B., A General Chemical Route to Polyaniline Nanofibers, J. Am. Chem. Soc.,126, 851-855, 2004.

112. Zhang X., Chan-Yu-King R., Jose A., and Manohar S.K., Nanofibers of Polyaniline Synthesized by Interfacial Polymerization, Synth. Metal.,145, 23-29, 2004.

113. Wang Z., Zhou L., Yu P., Liu Y., Chen J., Liao J., Li W., Chen W., Zhou W., and Yi X., Polydopamine-Assisted Electrochemical Fabrication of Polypyrrole Nanofibers on Bone Implants to Improve Bioactivity, Macromol. Mater. Eng.,301, 1288-1294, 2016.

114. Heeger A.J., Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials (Nobel Lecture), Angew. Chem. Int. Ed., 40, 2591-2611, 2001.

115. Guiseppi-Elie A., Electroconductive Hydrogels: Synthesis, Characterization and Biomedical Applications, Biomaterials, 31, 2701-2716, 2010.

116. Xu D., Fan L., Gao L., Xiong Y., Wang Y., Ye Q., Yu A., Dai H., Yin Y., and Cai J., Micro-Nanostructured Polyaniline Assembled in Cellulose Matrix via Interfacial Polymerization for Applications in Nerve Regeneration, ACS Appl. Mater. Interfaces, 8, 17090-17097, 2016.

117. Wan M., A Template-Free Method Towards Conducting Polymer Nanostructures, Adv. Mater.,20, 2926-2932, 2008.

118. Zang J., Li C.M., Bao S.J., Cui X., Bao Q., and Sun C.Q., Template-Free Electrochemical Synthesis of Superhydrophilic Polypyrrole Nanofiber Network, Macromolecules, 41, 7053-7057, 2008.

119. Laforgue A. and Robitaille L., Production of Conductive Pedot Nanofibers by the Combination of Electrospinning and Vapor-Phase Polymerization, Macromolecules, 43, 4194-4200, 2010.

120. Lee J.Y., Bashur C.A., Goldstein A.S., and Schmidt C.E., Polypyrrole-Coated Electrospun PLGA Nanofibers for Neural Tissue Applications, Biomaterials, 30, 4325-4335, 2009.