نقش پلیمرها در توسعه مواد تغییر فاز برای ذخیره انرژی: مروری بر روش‌های کپسول‌دارشدن و کاربردهای آن‌ها

نوع مقاله: مروری

نویسندگان

تهران، پژوهشگاه پلیمر و پتروشیمی ایران، پژوهشکده علوم، گروه علوم پلیمر، صندوق پستی 112-14975

10.22063/jipst.2020.1741

چکیده

 با جدی‌شدن بحران انرژی در سال‌های اخیر، مواد تغییر فاز (PCMs) بهترین گزینه برای ذخیره انرژی گرمایی هستند و توجه ویژه‌ای را در این زمینه جلب کرده‌اند. PCMها، انرژی را طی فرایند گرمادهی همراه با انتقال‌های فاز جذب می‌کنند. این انرژی می‌تواند طی فرایند سرمایش به محیط اطراف منتقل شود. به‌عبارت دیگر، این ترکیبات قابلیت ذخیره و آزادسازی مقادیر زیادی گرما را از راه انتقال‌های فاز با تغییر جزئی دما دارند. PCMها به چهار گروه مواد آلی، غیرآلی، اوتکتیک و پلیمری دسته‌بندی می‌شوند. اما، عمده‌ترین محدودیت PCMها، مشکل اختلاط آن‌ها با سایر مواد است. کپسول‌دارشدن بهترین راه‌حل برای استفاده مؤثر از PCMها به‌منظور افزایش سرعت انتقال گرما، جلوگیری از نشت، کاهش برهم‌کنش با محیط بیرون و تغییرات حجم محدود آن‌ها طی تغییر فاز است. کپسول‌دارشدن، فرایند پوشش‌دهی PCM‌ها با ماده‌ای مناسب برای محافظت جامدات، مایعات یا گازها درون پوسته جامد است. مواد کپسول‌دارشده بر اساس اندازه کپسول به انواع ماکروکپسول‌ها، میکروکپسول‌‌ها و نانوکپسول‌ها دسته‌بندی می‌شوند. از این میان، میکروکپسول‌دارشدن روشی موفق برای توسعه کاربرد PCM‌ها در صنایع ساختمان، داروسازی، کشاورزی و نساجی است. انواع مختلف میکروکپسول‌ها می‌توانند با گستره‌ای از مواد پوسته با روش‌های مختلف فیزیکی، فیزیکی-شیمیایی و شیمیایی تهیه شوند. بسته به ماهیت شیمیایی، سه نوع مواد پوسته شامل پوسته‌های آلی، غیرآلی و هیبریدهای آلی-غیرآلی برای میکروکپسول‌دارشدن به‌کارگرفته می‌شوند. مواد پلیمری متداول برای استفاده در پوسته شامل پلی‌پروپیلن، پلی‌اتیلن، پلی‌اوره، پلی‌استیرن، پلی‌آمید، رزین‌های اوره-فرمالدهید، ملامین-فرمالدهید و آکریلی هستند. با توجه به اهمیت روش‌های کپسول‌دارشدن و کاربردهای متنوع CM‌های کپسول‌دار‌شده در صنایع مختلف، در این مقاله مهم‌ترین روش‌های کپسول‌دارشدن PCM‌هادر تهیه PCM‌های پایدار با درنظرگرفتن نقش پلیمرها مرور شده است.  

کلیدواژه‌ها


عنوان مقاله [English]

Role of Polymers in Developing Phase Change Materials for Energy Storage: A Review on Encapsulation Methods and Their Applications

نویسندگان [English]

  • Hajar Jamshidi
  • Ali Reza Mahdavian
Department of Polymer Science, Faculty of Science, Iran Polymer and Petrochemical Institute, P.O. Box 14975-112,, Tehran, Iran
چکیده [English]

With serious energy crisis in recent years, phase change materials (PCMs) are among the best choice for thermal energy storage. These materials have attracted special attention in energy saving. PCMs absorb energy during the heating process accompanied by their phase transitions. This energy can be transferred into the surrounding environment during the cooling process. In other words, these compounds have the ability to store and release high amount of heat through phase transitions with a slight temperature variation. PCMs are classified into four groups of organic, inorganic, eutectic and polymeric materials. However, the major limitation of PCMs is their mixing problem with other materials. Encapsulation might be the best way for effective use of PCMs to increase heat transfer rate, preventing their leakage, reducing their interaction with the external media and limit volume changes during phase change. Encapsulation is a coating process of PCMs with a suitable material to protect solids, liquids or gases in a solid shell. Encapsulated materials are categorized into macrocapsules, microcapsules, and nanocapsules, based on the capsule size. Among these, microencapsulation is a successful method to develop PCMs application in construction, pharmaceutics, agriculture, and textile industries. Different types of microcapsules can be made with a wide range of shell materials by various physical, physico-chemical and chemical methods. Depending on the chemical nature, three types of shell materials are used for microcapsulation, including organic, inorganic, and organic/inorganic hybrids. The conventional polymeric compounds in the shell include polypropylene, polyethylene, polyurethane, polystyrene, polyamide, urea-formaldehyde, melamine-formaldehyde and acrylic resins. Due to the importance of encapsulation methods and versatile applications of encapsulated PCMs in various industries, the most important methods for encapsulation of PCMs are reviewed in this paper in preparation of stable PCMs by consideration of the role of polymers.

کلیدواژه‌ها [English]

  • phase change materials
  • microencapsulation
  • polymerization
  • phase transition
  • Thermal Energy Storage
  1. Tebaldi M.L., Belardi R.M., and Montoro S.R., Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems, Chapt. 8, 155-169, Elsevier, 2016.
  2. Dwivedi V.K., Tiwari P., and Tiwari S., Importance of Phase Change Material (PCM) in Solar Thermal Applications: A Review, The Proceeding of International Conference on Emerging Trends in Electrical, Electronics and Sustainable Energy Systems, ICETEESES 2016, India, 11-12 March, 2016.
  3. Sharma A., Tyagi V.V., Chen C.R., and Buddhi D., Review on Thermal Energy Storage with Phase Change Materials and Applications, Renew. Sust. Energy Rev., 13, 318-345, 2009.
  4. Ibrahim D. and Rosen M.A., Thermal Energy Storage Systems and Applications, 2nd ed., John Wiley and Sons, UK, 2011.
  5. Kenisarin M. and Mahkamov M., Solar Energy Storage Using PCMs, Renew. Sust. Energy Rev., 11, 1913-1965, 2007.
  6. Sharma S.D. and Sagara K. Latent Heat Storage Materials and Systems: A Review, Int. J. Green. Energy, 2, 1-56, 2005.
  7. Alva G., Lin Y., Liu L., and Fang G., Synthesis, Characterization and Applications of Microencapsulatedphase Change Materials in Thermal Energy Storage: A Review, Energy Build., 144, 276-294, 2017.
  8. Khyad A., Samrani H., and Bargach M.N.,State of the Art Review of Thermal Energy Storage Systems Using PCM Operating with Small Temperature Differences: Focus on Paraffin, J. Mater. Environ. Sci., 7, 1184-1192, 2016.
  9. Mondal S., Phase Change Materials for Smart Textiles-An Overview, Appl. Therm. Eng., 28, 1536-1550, 2008.
  10. Fleischer A.S., Thermal Energy Storage Using Phase Change Materials: Fundamentals and Applications, Springer, USA, Chapt.3, 2015.
  11. Nazir H., Batool M., Osorio F.J.B., Isaza-Ruiz M., Xu X., Vignarooban K., Patrick P., and Kannan A.M., Recent Developments in Phase Change Materials for Energy Storage Applications: A Review, Int. J. Heat Mass Transfer, 129, 491-523, 2019.
  12. Mishra A., Shukla A., and Sharma A., Latent Heat Storage through Phase Change Materials, Resonance, 20, 532-541, 2015.
  13. Pielichowska K. and Pielichowski K., Phase Change Materials for Thermal Energy Storage, Prog. Mater. Sci., 65, 67-123, 2014.
  14. Shukla A., Sharma A., Shukla M., and Chen C.R., Development of Thermal Energy Storage Materials for Biomedical Applications, J. Med. Eng. Technol., 39, 363-368, 2015.
  15. Pasupathy A., Velraj R., and Seeniraj R.V., Phase Change Material-Based Building Architecture for Thermal Management in Residential and Commercial Establishments, Renew. Sust. Energy Rev., 12, 39-64, 2008.
  16. Choon Hyun D., Levinson N.S., Jeong U., and Xia Y., Emerging Applications of Phase-Change Materials (PCMs): Teaching an Old Dog New Tricks, Angew. Chem. Int. Ed., 53, 3780-3795, 2014.
  17. Patel J.H., Darji P.H., and Qureshi M.N., Phase Change Material with Thermal Energy Storage System and Its Applications: A Systematic Review, Indian J. Sci. Technol., 10,2017. DOI: 10.17485/ijst/2017/v10i13/112365
  18. Sarier N. and Onder E., Organic Phase Change Materials and Their Textile Applications: An Overview, Thermochimica Acta, 540, 7-60, 2012.
  19. Tyagi V.V. and Buddhi D., PCM Thermal Storage in Buildings: A State of Art, Renew. Sust. Energy Rev., 11, 1146-1166, 2007.
  20. Mohamed S.A., Al-Sulaiman F.A., Ibrahim N.I., Zahir M.H., Al-Ahmed A., Saidura R., Yılbaş B.S., and Sahin A.Z., A Review on Current Status and Challenges of Inorganic Phase Change Materials for Thermal Energy Storage Systems, Sust. Energy Rev., 70, 1072-1089, 2017. 
  21. Sarbu I. and Sebarchievici C., A Comprehensive Review of Thermal Energy Storage, Sustainability, 10, 191, 2018. DOI: 10.3390/su10010191.
  22. Tatsidjodoung P., Le Pierres N., and Luo L., A Review of Potential Materials for Thermal Energy Storage in Building Applications, Renew. Sust. Energy Rev., 18, 327-349, 2013.
  23. Weingrill H.M., Polymeric Phase-Change Materials: Applicability, Functionalization and Long-Term Stability, PhD Thesis, Department Polymer Engineering and Science, University of Leoben, Austria, 2019.
  24. Cai Y., Wei Q., Huang F., Lin S., Chen F., and Gao W., Thermal Stability, Latent Heat and Flame Retardant Properties of the Thermal Energy Storage Phase Change Materials Based on Paraffin/High Density Polyethylene Composites, Renew. Energy, 34, 2117-2123, 2009.
  25. Alkan C. and Sari A., Fatty Acid/Poly(methyl methacrylate) (PMMA) Blends as Form-Stable Phase Change Materials for Latent Heat Thermal Energy Storage, Solar Energy, 82, 118-124, 2008.
  26. Sari A., Alkan C., Karaipekli A., and Onal A., Preparation, Characterization and Thermal Properties of styrene Maleic Anhydride Copolymer (SMA)/Fatty Acid Composites as Form Stable Phase Change Materials, Energy Convers. Manag., 49, 373-380, 2008.
  27. Chen C., Wang L., and Huang Y., Morphology and Thermal Properties of Electro-spun Fatty Acids/Polyethylene Terephthalate Composite Fibers as Novel Form-Stable Phase Change Materials, Sol. Energy Mater. Sol. Cells, 62, 3515-3517, 2008.
  28. Kaygusuz K., Alkan C., Sari A., and Uzun O., Encapsulated Fatty Acids in an Acrylic Resin as Shape-Stabilized Phase Change Materials for Latent Heat Thermal Energy Storage, Energy Source. Part A, 30, 1050-1059, 2008.
  29. Arce M.E., Alvarez M.A.F., Garcia A.S., and Luhrs C.C., Novel Formulations of Phase Change Materials-Epoxy Composites for Thermal Energy Storage, Materials, 11, 195, 2018. DOI: 10.3390/ma11020195.
  30. Fan L. and Khodadadi J.M., Thermal Conductivity Enhancement of Phase Change Materials for Thermal Energy Storage: A Review, Renew. Sust. Energy Rev., 15, 24-46, 2011.
  31. Lin Y., Jia Y., Alva G., and Fang G., Review on Thermal Conductivity Enhancement, Thermal Properties and Applications of Phase Change Materials in Thermal Energy Storage, Renew. Sust. Energy Rev., 82, 2730-2742, 2018.
  32. Salunkhe P.B. and Shembekar P.S., A Review on Effect of Phase Change Material Encapsulation on the Thermal Performance of a System, Renew. Sust. Energy Rev., 16, 5603-5616, 2012.
  33. Regin F.A., Solanki S.C., and Saini J.S., Heat Transfer Characteristics of Thermal Energy Storage System Using PCM Capsules: A Review, Renew. Sust. Energy Rev., 12, 2438-2458, 2008.
  34. Jamekhorshid A., Sadrameli S.M., and Farid M., A Review of Microencapsulation Methods of Phase Change Materials (PCMs) as a Thermal Energy Storage (TES) Medium, Renew. Sust. Energy Rev., 31, 531-542, 2014.
  35. Zhaoa C.Y. and Zhangb G.H., Review on Microencapsulated Phase Change Materials (MEPCMs): Fabrication, Characterization and Applications, Renew. Sust. Energy Rev., 15, 3813-3832, 2011.
  36. Giro-Paloma J., Martínez M., Cabeza L.F., and Fernández A.I., Types, Methods, Techniques, and Applications for Microencapsulated Phase Change Materials (MPCM): A Review, Renew. Sust. Energy Rev., 53, 1059-1075, 2016.
  37. Werner R., Compatibility of Organic Latent Heat Storage Materials and Plastic Container Materials, Heat Recovery Systems and CHP, 7, 383-388, 1987.
  38. Sun G. and Zhang Z., Mechanical Strength of Microcapsules Made of Different Wall Materials, Inte. J. Pharmaceut., 242, 307-311, 2002. 
  39. Zhang H. and Wang X., Synthesis and Properties of Mcroencapsulated n-Octadecane with Polyuria Shells Containing Different of Segments for Heat Energy Storage and Thermal Regulation, Sol. Energy Mater. Sol. Cells, 93, 1366-1376, 2009.
  40. Umair M.M., Zhang Y., Iqbal K., Zhang S., and Tang B., Novel Strategies and Supporting Materials Applied to Shape-Stabilize Organic Phase Change Materials for Thermal Energy Storage-A Review, Appl. Energy, 235, 846-873, 2019.
  41. Borreguero A.M., Valverde J.L., Rodrguez J.F., Barber A.H., Cubillo J.J., and Carmon M., Synthesis and Characterization of Microcapsules Containing Rubitherm®RT27 Obtained by Spray Drying, Chem. Eng. J., 166, 384-390, 2011.
  42. Konuklu Y., Unal M., and Paksoy H.O., Microencapsulation of Caprylic Acid with Different Wall Materials as Phase Change Material for Thermal Energy Storage, Sol. Energy Mater. Sol. Cells B, 120,536-542, 2014.
  43. Zhang Y., Lin W.J., Yang R., Zhang Y.P., and Zhang Q.W., Preparation and Thermal Property of Phase Change Material Microcapsules by Phase Separation, Mater. Sci. Forum., 561-565, 2293-2296, 2007.
  44. Yang R., ZhangY., Wang X., ZhangY., and Zhang Q., Preparation of n-Tetradecane- Containing Microcapsules with Different Shell Materials by Phase Separation Method, Sol. Energy Mater. Sol. Cells, 93, 1817-1822, 2009.
  45. Gharsallaoui A., Roudaut G., Chambin O., Voilley A., and Saurel R., Applications of Spray-Drying in Microencapsulation of Food Ingredients: An Overview, Food Res. Int., 40, 1107-1121, 2007.
  46. Wang L.Y. and Tsai P.S., and Yang Y.M., Preparation of Silica Microspheres Encapsulating Phase-Change Material by Sol-Gel Method in O/W Emulsion, J. Microencapsul., 23, 3-14, 2006.
  47. Zhang H., Wang X., and Wu D., Silica Encapsulation of n-Octadecane via Sol-Gel Process: A Novel Microencapsulated Phase-Change Material with Enhanced Thermal Conductivity and Performance, J. Colloid Interf. Sci., 343, 246-255, 2010.
  48. Lu S., Shen T.,  Xing J., Song Q.,  Shao J.,  Zhang J., and  Xin C., Preparation and Characterization of Cross-Linked Polyurethane Shell Microencapsulated Phase Change Materials by Interfacial Polymerization, Mater. Lett., 211, 36-39, 2018.
  49. Guang-Long Z., Xiao-Zheng L., Zhi-Cheng T., Li-Xian S., and Tao Z., Microencapsulation  of n-Hexadecane as a Phase Change Material in Polyuria, Acta Phys. Chim. Sic., 20, 90-93, 2004.
  50. Lan X.Z., Tan Z.C., Zou G.L., Sun L.X., and Zhang T., Microencapsulation of n-Eicosane as Energy Storage Material, Chin. J. Chem., 22, 411-444, 2004.
  51. Liang C., Lingling X., Hongbo S., and Zhibin Z., Microencapsulation of Butylstearate as a Phase Change Material by Interfacial Polycondensation in a Polyurea System, Energy Convers. Manag., 50, 723-7299, 2009.
  52. Wei J., Li Z., Liu L., and Liu X., Preparation and Characterization of Novel Polyamide Paraffin MEPCM by Interfacial Polymerization Technique, J. Appl. Polym. Sci., 127, 4588-4593, 2013.
  53. Zhang H.Z., Sun S.Y., Wang X.D., and Wu D.Z., Fabrication of Microencapsulated Phase Change Materials Based on n–Octadecane Core and Silica Shell Through Interfacial Polycondensation, Colloids Surf. A: Physicochem. Eng. Asp. 389, 104-117, 2011.
  54. Liang C., Lingling X., Hongbo S., and Zhibin Z., Microencapsulation of Butyl Stearate as a Phase Change Material by Interfacial Polycondensation in a Polyurea System, Energy Convers. Manage., 50, 723-729, 2009.
  55. Zhang H.Z. and Wang X.D., Fabrication and Performances of Microencapsulated Phase Change Materials Based on n-Octadecane Core and Resorcinol-Modifiedmelamine–Formaldehyde Shell, Colloids Surf. A: Physicochem. Eng. Aspects, 332, 129-138, 2009.
  56. Khakzad F., Alinejad Z., Rezaee Shirin-Abadi A., Ghasemi M., and Mahdavian A.R., Optimization of Parameters in Preparation of PCM Microcapsules Based on Melamine Formaldehyde through Dispersion Polymerization, Colloid. Polym. Sci., 292, 355-368, 2014.
  57. Alinejad Z., Khakzad F., Rezaee Shirin-Abadi A., Ghasemi M., and Mahdavian A.R.,  Preparation of Melamine-Formaldehyde Microcapsules Containing Hexadecane as a Phase Change Material: The Effect of Surfactants Type and Concentration, Iran. J. Polym. Sci. Technol. (Persian), 26, 33-44, 2013.
  58. Lashgari S., Arabi H., Mahdavian A.R., and Ambrogi V., Thermal and Morphological Studies on Novel PCM Microcapsules Containing n-Hexadecane as the Core in a Flexible Shell, Appl. Energ., 190, 612-622, 2017.
  59. Lashgari S., Mahdavian A.R., Arabia H., Ambrogi V., and Marturano V., Preparation of Acrylic PCM Microcapsules with Dual Responsivity to Temperature and Magnetic Field Changes, Eur. Polym. J., 101, 18-28, 2018.
  60. Mahdieh A., Mahdavian A.R., and Salehi-Mobarakeh H., Chemical Modification of Magnetite Nanoparticles and Preparation of Acrylic-base Magnetic Nanocomposite Particles via Miniemulsion Polymerization, J. Magn. Magn. Mater., 426, 230-238, 2017.
  61. Mahdavian A.R., Ashjari M., and Makoo A.B., Preparation of Poly(styrene-methyl methacrylate)/SiO2 Composite Nanoparticles via Emulsion Polymerization, An Investigation into the Compatiblization, Eur. Polym. J., 43, 336-344, 2007.
  62. Mahdavian A.R., Sarrafi Y., Shabankareh M., Nanocomposite Particles with Core–Shell Morphology III: Preparation and Characterization of Nano Al2O3-Poly(styrene-methyl methacrylate) Particles via Miniemulsion Polymerization, Polym. Bull., 63, 329-340, 2009.
  63. Hasanzadeh I., Mahdavian A.R., and Barikani M., Preparation of Acrylic/MWNTs Nanocomposite Latexes via Ultrasonically-Assisted Emulsion Polymerization: A Comparative Study, Eur. Polym. J., 75, 104-115, 2016.
  64. Rahim-Abadi M.M., Mahdavian A.R., Gharieh A., and Salehi-Mobarakeh H., Chemical Modification of TiO2 Nanoparticles as an Effective way for Encapsulation in Polyacrylic Shell via Emulsion Polymerization, Prog. Org. Coat., 88, 310-315, 2015.
  65. Gharieh A., Khoee S., and Mahdavian A.R., Emulsion and Miniemulsion Techniques in Preparation of Polymer Nanoparticles with Versatile Characteristics, Adv. Colloid Interface Sci., 269, 152-186, 2019.
  66. Ma S., Song G., Li W., Fan P., and Tang G., UV Irradiation-Initiated MMA Polymerization to Prepare Microcapsules Containing Phase Change Paraffin, Sol. Energy Mater. Sol. Cells, 94, 1643-1647, 2010.
  67. Alay S., Göde F., and Alkan C., Synthesis and Thermal Properties of Poly(n-butyl acrylate)/n-Hexadecane Microcapsules Using Different Cross-Linkers and Their Application to Textile Fabrics, J. Appl. Polym. Sci., 120, 2821-2829, 2011.
  68. Liu C., Rao Z., Zhao J., Huo Y., and Li Y., Review on Nanoencapsulated Phase Change Materials: Preparation, Characterization and Heat Transfer Enhancement, Nano Energy, 13, 814-826, 2015.
  69. Sukhorukov G., Fery A., and Möhwald H., Intelligent Micro-and Nanocapsules, Prog. Polym. Sci., 30, 885-897, 2005.
  70. Fang Y., Kuang S., Gao X., and Zhang Z., Preparation and Characterization of Novel Nanoencapsulated Phase Change Materials, Energy Convers. Manag., 49, 3704-3707, 2008.
  71. Wang Y., Zhang Y., Xia T., Zhao W.J., and Yang W.H., Effects of Fabricated Technology on Particle Size Distribution and Thermal Properties of Stearic–Eicosanoic Acid/Polymethyl Methacrylate Nanocapsules, Sol. Energy Mater. Sol. Cells, 120, 481-490, 2014.
  72. Baek K.H., Lee J.Y., and Kim J.H., Core/Shell Structured PCM Nanocapsules Obtained by Resinfortified Emulsionprocess, J. Dispers. Sci. Technol., 28, 1059-1065, 2007.
  73. Rezaee Shirin-Abadi A., Mahdavian A.R., and Khoee S., New Approach for the Elucidation of PCM Nanocapsules through Miniemulsion Polymerization with an Acrylic Shell, Macromolecules, 44, 7405-7414, 2011.
  74. Rezaee Shirin-Abadi A., Khoee S., Maleki Rahim-Abadi. M., and Mahdavian A.R., Kinetic and Thermodynamic Correlation for Prediction of Morphology of Nanocapsules with Hydrophobic Core via Miniemulsion Polymerization, Colloid. Surf A: Physicochem. Eng. Aspects, 462, 18-26, 2014.
  75. Fu W., Liang X., Xie H., Wang S., Gao X., Zhang Z., and Fang Y.,  Thermophysical Properties of n-Tetradecane@Polystyrene-Silicacomposite Nanoencapsulated Phase Change Material Slurry for Cold Energy Storage, Energy Build., 136, 26-32, 2017.
  76. Xi P., Zhao T., Xia L., Shu D., Ma M., and Cheng B., Fabrication and Characterization of Dual-Functional Ultrafine Composite Fibers with Phase-Change Energy Storage and Luminescence Properties, Sci. Rep., 7, 40390. 2017.
  77. Zhang Y., Tang B., Wang L., Lu R., Zhao D., and Zhang S., Novel Hybrid Form-Stable Polyether Phase Change Materials with Good Fire Resistance, Energy Storage Mater., 6, 46-52, 2017.
  78. Zhang Y., Gurzadyan G.G., Umair M.M., Wang W., Lu R., Zhang S., Ultrafast and Efficient Photothermal Conversion for Sunlight-Driven Thermal-Electric System, Chem. Eng. J., 344, 402-409, 2018.
  79. Zhang X., Deng P., Feng R., and Song J., Novel Gelatinous Shape-stabilized Phase Change Materials with High Heat Storage Density, Sol. Energ. Mater. Sol., Cells, 95, 1213-1218, 2011.
  80. Constantinescu M., Dumitrache L., Constantinescu D., Anghel E.M., Popa V.T., Stoica A., and Olteanu M., Latent Heat Nanocomposite Building Materials, Eur. Polym. J., 46, 2247-2254, 2010.
  81. Kaygusuz K. and Sari A., High Density Polyethylene/Paraffin Composites as Form-Stable Phase Change Material for Thermal Energy Storage, Energy Source., Part A, 29, 261-270, 2007.
  82. Sundararajan S., Samui A.B., and Kulkarni P.S., Shape-stabilized Poly(ethylene glycol) (PEG)-Cellulose Acetate Blend Preparation with Superior PEG Loading via Microwave-Assisted Blending, Sol. Energy, 144, 32-39, 2017.
  83. Zhang L., Zhu J., Zhou W., Wang J., and Wang Y., Characterization of Polymethyl Methacrylate/Polyethylene glycol/Aluminum Nitride Composite as Form-Stable Phase Change Material Prepared by In Situ Polymerization Method,  Thermochim. Acta, 254, 128-34, 2011.
  84. Zhang Y., Wang L., Tang B., Lu R., and Zhang S., Form-Stable Phase Change Materials with High Phase Change Enthalpy from the Composite of Paraffin and Cross-Linking Phase Change Structure, Appl. Energy, 184, 241, 2016.
  85. Sarier N. and Onder E., Thermal Characteristics of Polyurethane Foams Incorporated with Phase Change Materials, Thermochim. Acta, 454, 90-98, 2007.
  86. Telkes M., Thermal Storage for Solar Heating and Cooling, Proceedings of the Workshop on Solar Energy Storage subsystems for Heating and Cooling of Buildings, Charlottesville, University of Virginia, 1975.
  87. Feldman D., Khan M.A., and Banu D., Energy Storage Composite with an Organic Phase Change Material, Sol. Energy Mater., 18, 333-341, 1989.
  88. Feldman D., Shapiro M., Banu D., and Fuks C.J., Fatty Acids and Their Mixtures as Phase Change Materials for Thermal Energy Storage, Sol. Energy Mater., 18, 201-216. 1989.
  89. Feldman D., Banu D., Hawes D., and Ghanbari E., Obtaining an Energy Storing Building Material by Direct Incorporation of an Organic Phase Change Material in Gypsum Wallboard, Sol. Energy Mater., 22, 231-242, 1991.
  90. Barreneche C., Navarro L., deGracia A., Fernández A.I., and Cabeza L.F., In Situ Thermal and Acoustic Performance and Environmental Impact of the Introduction of a Shape-Stabilized PCM Layer for Building Applications, Renew. Energy, 85, 281-286, 2016.
  91. Li D., Zheng Y., Liu C., and Wu G., Numerical Analysis on Thermal Performance of Roof Contained PCM of a Single Residential Building, Energy Convers. Manage., 100, 147-56, 2015.
  92. Khalil E., Application of Phase Change Materials in Textiles: A Review, Int. J. Res. Rev., 2, 261-294, 2015.
  93. Iqbal K. and Sun D., Development of Thermo-regulating Polypropylene Fiber Containing Microencapsulated Phase Change Materials, Renew. Energy, 71, 473-479, 2014.
  94. Zhao L., Luo J., Wang H., Song G., and Tang G., Self-assembly Fabrication of Microencapsulated n-Octadecane with Natural Silk Fibroin Shell for Thermal Regulating Textiles, Appl. Therm. Eng., 99, 495-501, 2016.
  95. Chen C., Wang L., and Huang Y., A Novel Shape-Stabilized PCM: Electrospun Ultrafine Fibers Based on Lauric Acid/Polyethylene Terephthalate Composite, Mater. Lett., 62, 3515-3517, 2008.
  96. Prajapati D.G. and Kandasubramanian B., A Review on Polymeric-Based Phase Change Material for Thermo-Regulating Fabric Application, Polym. Rev., 2019. DOI: 10.1080/15583724.2019.1677709
  97. Wang C., Hossain M., Ma L., Ma Z., Hickman J.J., and Su M., Highly Sensitive Thermal Detection of Thrombin Using Aptamer Functionalized Phase Change Nanoparticles, Biosens. Bioelectron., 26, 437-443, 2010.
  98. Choi S.W., Zhang Y., and Xia Y., A Temperature-Sensitive Drug Release System Based on Phase-Change Materials, Angew. Chem., 2010, 49, 7904-7908.
  1. Hyun D.C., Lu P., Choi S.I., Jeong U., and Xia Y., Microscale Polymer Bottles Corked with a Phase-Change Material for Temperature-Controlled Release, Angew. Chem. Int. Ed., 52, 10468-10471, 2013.