بهبود عملکرد غشای نانوفیلتری لایه‌نازک پلی‌آمیدی با نانولوله‌های اصلاح‌شده تیتانیم اکسید

نوع مقاله: پژوهشی

نویسندگان

1 بابل، دانشگاه صنعتی نوشیروانی بابل، دانشکده مهندسی شیمی، صندوق پستی 484

2 اسکودای، جوهور، دانشگاه صنعتی مالزی، مرکز تحقیقاتی فناوری‌های‌ نوین غشایی

10.22063/jipst.2020.1748

چکیده

فرضیه: امروزه غشاهای نانوفیلتری به‌طور گسترده در زمینه نمک‌زدایی و تصفیه آب به‌کار گرفته می‌شوند. اما، باید برخی مشکلات شایان توجه در زمینه نمک‌زدایی از قبیل شار و پس‌زنی کم را با کاربرد نانومواد اصلاح‌شده کنترل کرد. پژوهش‌های مختلفی در این زمینه انجام شده است، اما اهمیت موضوع، انجام پژوهش‌های بیشتر را در این زمینه ضروری می‌کند.
روش‌ها: غشاهای نانوکامپوزیتی لایه‌نازک دارای نانولوله‌های تیتانیم اکسید و نیز نانولوله‌های تیتانیم اکسید اصلاح‌شده بررسی شدند. بدین ترتیب که پس از تهیه نانولوله‌ها، سطح داخلی آن‌ها اصلاح و پس از تهیه غشا، مقدار تراوایی (عبوردهی) آب و پس‌زنی یون‌های تک و دوظرفیتی به‌وسیله غشا اندازه‌گیری شد. همچنین، نانولوله‌های اولیه و اصلاح‌شده با طیف‌سنجی زیرقرمز تبدیل فوریه (FTIR) و آزمون اندازه‌گیری سطح ویژه (Brunauer-Emmett-Teller, BET) بررسی شدند. شکل‌شناسی و ساختار غشاهای لایه نازک با میکروسکوپی الکترونی پویشی نشر میدانی (FE-SEM) ارزیابی شد.
یافته‌ها: عملکرد غشاهای لایه‌نازک پلی‌آمیدی با آزمون‌های تراوایی آب خالص، زاویه تماس، شار تراوایی خوراک و مقدار پس‌زنی یون‌های سدیم و مس ارزیابی شد. بیشینه مقدار شار آب خالص (26.5L/m2h) برای غشا دارای %0.05 وزنی نانولوله اصلاح‌نشده، با %73.2 افزایش در مقایسه با غشای خالص به‌‌دلیل آب‌دوستی نانولوله‌ها و ایجاد منفذهای کوچک در سطح غشا به‌دست آمد. بیشینه پس‌زنی یون سدیم (%93.11) برای غشا دارای %0.2 وزنی نانولوله اصلاح‌شده به‌دلیل کاهش قطر نانولوله‌های اصلاح‌شده و تأمین سد انرژی لازم برای پس‌زنی نمک‌ها به‌دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Improvement in Polyamide Thin Film Nanofiltration Membrane Performance with Modified Titanium Oxide Nanotubes

نویسندگان [English]

  • Zeinab Fallahnejad 1
  • Gholamreza Bakeri Jafarkolaei 1
  • Ahmad Fauzi Ismail 2
1 Faculty of Chemical Engineering, Babol Noshirvani University of Technology, P.O. Box 484, Babol, Iran
2 Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim, Malaysia
چکیده [English]

Hypothesis: Nowadays, nanofiltration membranes are used extensively in desalination and water treatment, but some major drawbacks in the desalination such as low flux and rejection should be handled through application of modified nanomaterials. A number of research works have been done in this field but the importance of the subject makes more studies in this field indispensable.
Methods: Thin film nanocomposite membranes containing titanium oxide nanotubes and modified titanium oxide nanotubes were evaluated in this study which after synthesis of the nanotubes, their inner surface was modified and after synthesizing the membranes, the membranes’ water permeability and rejection of the monovalent and divalent ions were measured. Furthermore, Fourier transform infrared spectroscopy (FTIR) and Brunauer-Emmett-Teller (BET) tests were used to study the neat and modified nanotubes. Field emission scanning electron microscopy (FE-SEM) analysis was used to study the morphology and structure of these thin film membranes.
Findings: The performance of polyamide thin film membranes was evaluated by pure water permeation test, contact angle test, permeation flux of the feed and rejection of sodium and copper ions. Due to the hydrophilicity of the nanotubes and formation of small pore on the membrane surface, the maximum pure water flux (26.5 L/m2h) was obtained for the membrane containing 0.05% (wt) unmodified nanotube; an increase of 73.2% compared to its neat membrane. Due to the reduced diameter of the modified nanotubes and providing sufficient energy barrier for the salts to be rejected, the maximum sodium ion rejection (93.11%) was obtained for the membrane containing 0.2% (wt) modified nanotubes.

کلیدواژه‌ها [English]

  • nanofiltration membrane
  • nanotube
  • titanium oxide
  • permeation
  • rejection
  1. Jamaly S., Giwa A., and Hasan S.W., Recent Improvements in Oily Wastewater Treatment: Progress, Challenges, and Future Opportunities, Int. J. Environ. Sci., 37, 15-30, 2015.
  2. Ji Y., Qian W., Yu Y., An Q., Liu L., Zhou Y., and Gao C., Recent Developments in Nanofiltration Membranes Based on Nanomaterials, Chin. J. Chem. Eng., 25, 1639-1652, 2017.
  3. Hilal N., Al-Zoubi H., Darwish N. A., Mohamma A.W., and Abu Arabi M., A Comprehensive Review of Nanofiltration Membranes:Treatment, Pretreatment, Modelling, and Atomic Force Microscopy, Desalination, 170, 281-308, 2004.
  4. Oatley D.L., Llenas L., Pérez R., Williams P.M., Martínez-Lladó X., and Rovira M., Review of the Dielectric Properties of Nanofiltration Membranes and Verification of the Single Oriented Layer Approximation, Adv. Colloid Interfac, 173, 1-11, 2012.
  5. Lau W.J., Gray S., Matsuura T., Emadzadeh D., Paul Chen J., and Ismail, A.F., A Review on Polyamide Thin Film Nanocomposite (TFN) Membranes: History, Applications, Challenges and Approaches, Water Res., 80, 306-324, 2015.
  6. Hoek E.M.V., Pendergast M.T.M., and Ghosh A.K., Chapter-Nanotechnology-Based Membranes for Water Purification, in Street, A., Sustich R., Duncan J., and Savage N. (Eds.), Nanotechnology Applications for Clean Water, 2th ed., William Andrew, 2014.
  7. Abu Tarboush B., Arafat H., Matsuura T., and Rana, D., Recent Advances in Thin Film Composite (TFC) Reverse Osmosis and Nanofiltration Membranes for Desalination, J. Appl Membrane Sci. Technol., 10, 41-50, 2009.
  8. Jeong B.H., Hoek E.M.V., Yan Y., Subramani A., Huang X., Hurwitz G., Ghosh A.K., and Jawor A., Interfacial Polymerization of Thin Film Nanocomposites: A New Concept for Reverse Osmosis Membranes, J. Membr. Sci., 294, 1-7, 2007.
  9. Majumder M., Chopra N., Andrews R., and Hinds B.J., Enhanced Flow in Carbon Nanotubes, Nature, 438, 44, 2005.
  10. Abdullah M. and Kamarudin S.K., Titanium Dioxide Nanotubes (TNT) in Energy and Environmental Applications: An Overview, Renew. Sust. Energ. Rev., 76, 212-225, 2017.
  11. Rajaeian B., Rahimpour A., Tade M.O., and Liu S., Fabrication and Characterization of Polyamide Thin Film Nanocomposite (TFN) Nanofiltration Membrane Impregnated with TiO2 Nanoparticles, Desalination, 313, 176-188, 2013.
  12. Nativ P., Lahav O., and Gendel Y., Separation of Divalent and Monovalent Ions using Flow-Electrode Capacitive Deionization with Nanofiltration Membranes, Desalination, 425, 123-129, 2018.
  13. Nambikkattu J., Kaleekkal N.J., and Jacob J.P., Metal Ferrite Incorporated Polysulfone Thin-Film Nanocomposite Membranes for Wastewater Treatment, Environ. Sci. Pollut. Res., 2020.
  14. Valamohammadi E., Behdarvand F., Tofighy M.A., and Mohammadi T., Preparation of Positively Charged Thin-Film Nanocomposite Membranes Based on the Reaction Between Hydrolyzed Polyacrylonitrile Containing Carbon Nanomaterials and Hpei for Water Treatment Application, Sep. Purif. Technol., 242, 116826, 2020.
  15. Dong B., He B.L., Chai Y.M., and Liu C.G., Novel Pt Nanoclusters/Titanium Dioxide Nanotubes Composites for Hydrazine Oxidation, Mater. Chem. Phys., 120, 404-408, 2010.
  16. Abdallah H., Moustafa A.F., AlAnezi A.A., and El-Sayed H.E.M., Performance of a Newly Developed Titanium Oxide Nanotubes/Polyethersulfone Blend Membrane for Water Desalination Using Vacuum Membrane Distillation, Desalination, 346, 30-36, 2014.
  17. Arruda L.B., Santos C.M., Orlandi M.O., Schreiner W.H., and Lisboa-Filho P.N., formation and Evolution of TiO2 Nanotubes in Alkaline synthesis, Ceram. Int., 41, 2884-2891, 2015.
  18. Subramaniam M.N.,Goh P.S., Abdullah N., Lau W.J., Ng B.C., and Ismail A.F., Adsorption and Photocatalytic Degradation of Methylene Blue Using High Surface Area Titanate Nanotubes (TNT) Synthesized via Hydrothermal Method, J. of Nanopart. Res., 19, 220-232, 2017.
  19. Kang X., Cai W., Zhang S., and Cui S., Revealing the Formation Mechanism of Insoluble Polydopamine by Using a Simplified Model System, Polym. Chem., 8, 860-864, 2017.
  20. Ouyang J., Guo B., Fu L., Yang H., Hu Y., Tang A., Long H., Jin Y., Chen J., and Jiang J., Radical Guided Selective Loading of Silver Nanoparticles at Interior Lumen and Out Surface of Halloysite Nanotubes, Mater. Des., 110, 169-178, 2016.
  21. Aziz A.A., Wong K.C., Goh P.S., Ismail A.F., and Azelee I.W., Tailoring the Surface Properties of Carbon Nitride Incorporated Thin Film Nanocomposite Membrane for Forward Osmosis Desalination, J. Water Process Eng., 33, 101005, 2020.
  22. Zhou Z., Lee J.Y., and Chung T.S., Thin Film Composite Forward-Osmosis Membranes with Enhanced Internal Osmotic Pressure for Internal Concentration Polarization Reduction, Chem. Eng. J. 249, 236-245 ,2014.
  23. Rahimpour A., Seyedpour S.F., Aghapour Aktij S., Dadashi Firouzjaei M., Zirehpour A., Arabi Shamsabadi A., Khoshhal Salestan S., Jabbari M., and Soroush M., Simultaneous Improvement of Antimicrobial, Antifouling, and Transport Properties of Forward Osmosis Membranes with Immobilized Highly-Compatible Polyrhodanine Nanoparticles, Environ. Sci. Technol., 52, 5246-5258, 2018.
  24. Yah W.O., Takahara A., and Lvov Y.M., Selective Modification of Halloysite Lumen with Octadecylphosphonic Acid: New Inorganic Tubular Micelle, J. Am. Chem. Soc., 134, 1853-1859, 2012.
  25. Wang D., Xuan L., Han G., Wong A.H.H., Wang Q., and Cheng W., Preparation and Characterization of Foamed Wheat Straw Fiber/Polypropylene Composites Based on Modified Nano-TiO2 Particles, Compos. Part A: Appl. Sci. Manuf., 128, 105674, 2020.
  26. Shah L.A., Malik T., Siddiq M., Haleem A., Sayed M., and Naeem A., TiO2 Nanotubes Doped Poly(vinylidene fluoride) Polymer Membranes (PVDF/TNT) for Efficient Photocatalytic Degradation of Brilliant Green Dye, J. Environ. Chem. Eng., 7, 103291, 2019.
  27. Budiman H., Wibowo R., Zuas O., and Gunlazuardi J., Photo-electrochemical Properties of TiO2 Nanotube Arrays: Effect of Different Polishing Method of Ti Substrate Prior to Anodization in Fluoride-H2O2-Containing Electrolyte, J. Phys. Conf. Ser., 1153, 012073, 2019.
  28. Wang Z., Zhao S., Zhang W., Qi C., Zhang S., and Li J., Bio-Inspired Cellulose Nanofiber-Reinforced Soy Protein Resin Adhesives with Dopamine-Induced Codeposition of “Water-Resistant” Interphases, Appl. Surf. Sci., 478, 441-450, 2019.
  29. Subramaniam M.N., Goh P.S., Lau W.J., Ismail A.F., Gürsoy M., and Karaman M., Synthesis of Titania Nanotubes/Polyaniline Via Rotating Bed-Plasma Enhanced Chemical Vapor Deposition for Enhanced Visible Light Photodegradation, Appl. Surf. Sci., 484, 740-750, 2019.
  30. Amini M., Seifi M., Akbari A., and Hosseinifard M., Polyamide-zinc Oxide-Based Thin Film Nanocomposite Membranes: Towards Improved Performance for Forward Osmosis, Polyhedron, 179, 114362, 2020.
  31. Tang C.Y., Fu Q.S., Criddle C.S., and Leckie J.O., Effect of Flux (Transmembrane Pressure) and Membrane Properties on Fouling and Rejection of Reverse Osmosis and Nanofiltration Membranes Treating Perfluorooctane Sulfonate Containing Wastewater, Environ. Sci. Technol., 41, 2008-2014, 2007.
  32. Seyyed Shahabi S., Azizi N., Vatanpour V., and Yousefimehr N., Novel Functionalized Graphitic Carbon Nitride Incorporated Thin Film Nanocomposite Membranes for High-Performance Reverse Osmosis Desalination, Sep. Purif. Technol., 235, 116134, 2020.
  33. Rezaeian M.S., Mousavi S.M., Saljoughi E., and Akhlaghi Amiri H.A., Evaluation of Thin Film Composite Membrane in Production of Ionically Modified Water Applied for Enhanced Oil Recovery, Desalination, 474, 114194, 2020.
  34. Lee H. D., Kim H.W., Cho Y. H., and Park H. B., Experimental Evidence of Rapid Water Transport Through Carbon Nanotubes Embedded in Polymeric Desalination Membranes, Small, 10, 2653-2660, 2014.
  35. Gusev A. A. and Guseva O., Rapid Mass Transport in Mixed Matrix Nanotube/Polymer Membranes, Adv. Mater., 19, 2672-2676, 2007.
  36. Park J., Choi W., Kim S.H., Chun B.H., Bang J., and Lee K.B., Enhancement of Chlorine Resistance in Carbon Nanotube Based Nanocomposite Reverse Osmosis Membranes, Desalin. Water Treat., 15, 198-204, 2010.
  37. Zhao X., Ma J., Wang Z., Wen G., Jiang J., Shi F., and Sheng L., Hyperbranched-Polymer Functionalized Multi-Walled Carbon Nanotubes for Poly(vinylidene fluoride) Membranes: From Dispersion to Blended Fouling-Control Membrane, Desalination, 303, 29-38, 2012.
  38. Matsuura T. and Sourirajan S., Reverse Osmosis Transport Through Capillary Pores under the Influence of Surface Forces, Ind. Engin. Chem., 20, 273-282, 1981.
  39. Yu M., Funke H.H., Falconer J.L., and Noble R.D., High Density, Vertically-Aligned Carbon Nanotube Membranes, Nano Lett., 9, 225-229, 2009.
  40. Zarrabi H., Yekavalangi M.E., Vatanpour V., Shockravi A., and Safarpour M., Improvement in Desalination Performance of Thin Film Nanocomposite Nanofiltration Membrane Using Amine-Functionalized Multiwalled Carbon Nanotube, Desalination, 394, 83-90, 2016.
  41. Saeedi-Jurkuyeh A., Jafari A.J., Kalantary R.R., and Esrafili A., A Novel Synthetic Thin-Film Nanocomposite Forward Osmosis Membrane Modified by Graphene Oxide and Polyethylene Glycol for Heavy Metals Removal from Aqueous Solutions, React. Funct. Polym., 146, 104397, 2020.
  42. Wu H., Tang B., and Wu P., MWNTS/Polyester Thin Film Nanocomposite Membrane: An Approach to Overcome the Trade-Off Effect Between Permeability and Selectivity, J. Phys. Chem. C, 114, 16395-16400, 2010.
  43. Goosen M.F.A., Sablani S.S., Al-Hinai H., Al-Obeidani S., Al-Belushi R., and Jackson D., Fouling of Reverse Osmosis and Ultrafiltration Membranes: A Critical Review, Sep. Sci. Technol., 39, 2261-2296, 2005.