تخمین و بهینه‌سازی خواص فیزیکی لایه نانولیفی الکتروریسی‌شده بر پایه پلی‌(لاکتیک-گلیکولیک اسید) (PLGA)

نوع مقاله : پژوهشی

نویسندگان

1 قم، دانشگاه حضرت معصومه (س)، کد پستی 3736175514

2 تهران، دانشگاه صنعتی امیرکبیر، دانشکده مهندسی نساجی، صندوق پستی 4413-15875

چکیده

فرضیه: خواص فیزیکی لایه نانولیفی الکتروریسی‌شده اثر بسزایی بر رفتار لایه در برهم‌کنش با سطوح دیگر همچنین بر کارایی آن در کاربردهای مختلف دارد. بنابراین تعیین و پیش‌بینی این خواص ساختاری با استفاده از عامل‌های کنترل‌‌پذیر در فرایند الکتروریسی اهمیت ویژه‌ای خواهد داشت. بر این اساس در این پژوهش با استفاده از روابط ریاضی هر یک از خواص ساختاری لایه نانولیفی شامل تخلخل لایه، قطر و تخلخل الیاف تخمین زده شد. همچنین با استفاده از روش سطح پاسخ، یک مدل آماری برای پیش‌بینی و بهینه‌سازی عامل‌های ورودی و مقدار تخلخل لایه و لیف ارائه شد.
روش‌ها: برای تولید لایه‌های نانولیفی از پلی(‌لاکتیک‌-گلیکولیک اسید) استفاده شد. پس از تعیین و بهینه‌سازی مجموعه عوامل اثرگذار فرایند الکتروریسی بر خواص ساختاری لایه، هجده نوع لایه نانولیفی تهیه شد. با در نظرگرفتن اثر ترکیبی سه عامل الکتروریسی شامل غلظت محلول، سرعت خطی جمع‌کننده و رطوبت محیط، از روش سطح پاسخ برای بهینه‌سازی و از رگرسیون به‌منظور مدل‌سازی و تعیین رابطه بین متغیرها استفاده شد.
یافته‌ها: در بررسی روابط ریاضی حاصل بین عامل‌های ورودی و مشخصه‌های ساختاری لایه می‌توان بیان داشت، غلظت محلول مؤثرترین عامل بر قطر الیاف و تخلخل لایه است و سرعت جمع‌کننده مؤثرترین عامل بر تخلخل الیاف است. در بررسی مدل‌های سطح پاسخ، مقادیر بهینه عامل‌های اولیه به‌ترتیب برای غلظت محلول، درصد رطوبت محیط و سرعت جمع‌کننده بر اساس مدل طراحی‌شده تخلخل لیف، به‌ترتیب عبارت از 2w/v%، %45 و o.4m/s هستند و بر اساس مدل طراحی‌شده تخلخل لایه، عبارت از 3w/v%، %45 و 2.4m/s هستند. مقدار پاسخ بهینه پیش‌بینی‌شده برای تخلخل لیف و تخلخل لایه نیز به‌ترتیب عبارت از 0.342 و 0.989 است که اختلاف چندانی با مقادیر تجربی حاصل از این نقاط ندارند. لایه نانولیفی معرفی‌شده به‌کمک هر یک از این مدل‌ها، بیشترین تخلخل را ایجاد کرده است.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation and Optimization of Physical Properties of Electrospun PLGA Nanofibrous Mat

نویسندگان [English]

  • Fatemeh Zamani 1
  • Mohammad Amani-Tehran 2
  • Masoud Latifi 2
1 Hazrat-e Masoumeh University, Postal Code 3736175514, Qom, Iran
2 Department of Textile Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
چکیده [English]

Hypothesis: The physical properties of electrospun nanofibrous mats have a significant effect on the behavior of electrospun mat in interaction with other surfaces, as well as on its efficiency in various applications. Therefore, determining and predicting these structural properties using controllable factors in the electrospinning process are of particular importance. On this basis, in the present research each of the structural properties of nanofibrous mat, including mat porosity, diameter and porosity of fiber, were estimated using mathematical relationships. Also, the prediction and optimization of input factors and the porosity of the mat and fibers were performed using the response surface methodology (RSM).
Methods: Poly(lactic-glycolic-acid) was used to produce nanofibrous mats. After the determination and optimization of the electrospinning process factors, which influence the structural properties of nanofibrous mats, 18 types of mats were prepared. Considering the combined effect of three electrospinning factors, including solution concentration, humidity and collector linear speed, RSM and regression methods were used to optimize and model the relationship between variables and mat properties, respectively.
Findings: Based on the mathematical relationships between the input factors and the structural characteristics of the mat, it can be revealed that the concentration is the most effective factor on the fiber diameter and mat porosity, and the collection speed is the most effective factor on the fiber porosity. According to the RSM models, the optimized values for the initial factors of concentration, humidity and collection speed based on the model designed for fiber porosity are 2% (w/v), 45% and 0.4 m/s, and based on the model designed for mat porosity are 3% (w/v), 45% and 2.4 m/s, respectively. The predicted optimized values of fiber porosity and mat porosity are 0.342% and 0.989%, respectively, which are not much different from the experimental values obtained from these points. The nanofibrous mat introduced by each of these models has created the most porosity. 

کلیدواژه‌ها [English]

  • nanofibrous mat
  • electrospinning
  • physical properties
  • optimization
  • estimation of mathematical relations
  1. Mokhtari F., Salehi M., Zamani F., Hajiani F., Zeighami F., and Latifi M., Advances in Electrospinning, The Production and Application of Nanofibres and Nanofibrous Structures, Prog., 48, 119-219, 2016.
  2. Zamani F. and Hajiani F., Production and Application of Electrospun Nanofibrous Structures (Persian), Hazrat-e Masoumeh University, Iran, 2020.
  3. Kamoun E.A., Loutfy S.A., Hussein Y., and Kenawy R.S., Recent Advances in PVA-Polysaccharide Based Hydrogels and Electrospun Nanofibers in Biomedical Applications: A Review, J. Biolog. Macromol., 187, 755-768, 2021.
  4. Liu Y., Hao M., Chen Z., Liu L., Liu Y., Yang W., and Ramakrishna S., A Review on Recent Advances in Application of Electrospun Nanofiber Materials as Biosensors, Opin. Biomed. Eng., 13, 174-189, 2020.
  5. Zamani F., Amani-Tehran M., and Farkhondehnia H., The Effect of Electrical Stimulation on Growth and Proliferation of Neural Cells Using Conductive Nanofibrous Scaffolds, J. Polym. Sci. Technol. (Persian), 31, 427-434, 2019.
  6. Wang J., Ye R., Wei Y., Wang H., Xu X., Zhang F., Qu J., Zuo B., and Zhang H., The Effects of Electrospun TSF Nanofiber Diameter and Alignment on Neuronal Differentiation of Human Embryonic Stem Cells, Biomed. Mater. Res. Part A, 100, 632-645, 2012.
  7. Christopherson G.T., Song H., and Mao H-Q., The Influence of Fiber Diameter of Electrospun Substrates on Neural Stem Cell Differentiation and Proliferation, Biomaterials, 30, 556-564, 2009.
  8. Zamani F., Latifi M., Amani-Tehran M., and Shokrgozar M.A., Effects of PLGA Nanofibrous Scaffolds Structure on Nerve Cell Directional Proliferation and Morphology, Fiber Polym., 14, 568-702, 2013.
  9. Zamani F., Amani Tehran M., and Abbasi A., Fabrication of PCL Nanofbrous Scafold with Tuned Porosity for Neural Cell Culture, Biomat., 10,151-160, 2021.
  10. Pham Q.P., Sharma U., and Mikos A.G., Electrospun Poly(e-caprolactone) Microfiber and Multilayer Nanofiber/Microfiber Scaffolds: Characterization of Scaffolds and Measurement of Cellular Infiltration, Biomacromolecules, 7, 2796-2805, 2006.
  11. Soliman S., Sant S., Traversa E., Nichol J.W., and Khademhosseini A., Effect of Packing Density and Diameter of Fibers in 3-D Electrospun Scaffolds on Spreading, Proliferation, and Migration of Human Umbilical Vein Endothelial Cells, 11 th International Conference on Advanced Materials, Brazil, 20-25 September, 2009.
  12. Chew S.Y. and Mi Ruifa., The Effect of the Alignment of Electrospun Fibrous Scaffolds on Schwann Cell Maturation, Biomaterials, 29, 653-661, 2008.
  13. Meng Z.X., Wang Y.S., Ma C., Zheng W., Li L., and Zheng Y.F., Electrospinning of PLGA/Gelatin Randomly-Oriented and Aligned Nanofibers as Potential Scaffold in Tissue Engineering, Sci. Eng., 30, 1204, 2010.
  14. Lowery J.L., Datta N., and Rutledge G.C., Effect of Fiber Diameter, Pore Size and Seeding Method on Growth of Human Dermal Fibroblasts in Electrospun Poly(varepsilon-caprolactone) Fibrous Mats, Biomaterials, 3,1491-504, 2010.
  15. Ghasemi-Mobarakeh L., Semnani D., and Morshed M., A Novel Method for Porosity Measurement of Various Surface Layers of Nanofibers Mat Using Image Analysis for Tissue Engineering Applications, Appl. Poly. Sci., 106, 2536-2542, 2007.
  16. Rnjak-Kovacina J., Wise S., Li Z., Maitz K.M., P., Young C., Wang Y., and Weiss A., Tailoring the Porosity and Pore Size of Electrospun Synthetic Human Elastin Scaffolds for Dermal Tissue Engineering, Biomaterials, 32, 6729-6736, 2011.
  17. Ahmadipourroudposht M., Fallahiarezoudar E., Mohd Yusof N., and Idris A., Application of Response Surface Methodology in Optimization of Electrospinning Process to Fabricate (Ferrofluid/Polyvinyl alcohol) Magnetic Nanofibers, Sci. Eng., C, 50, 234-241, 2015.
  18. Ziabari M., Mottaghitalab V., and KhodaparastHaghi A., A New Approach for Optimization of Electrospunnanofiber Formation Process, Korean J. Chem. Eng., 27, 340-354, 2010.
  19. Jean-Gilles R., Soscia D., Sequeira S., Melfi M., Gadre A., Castracane J., and Larsen M., Novel Modeling Approach to Generate a Polymeric Nanofiber Scaffold for Salivary Gland Cells, Nanotechnol. Eng. Med.,1, 031008, 2010. DOI:10.1115/1. 4001744
  20. Gholipour A., Bahrami S.H., and Nouri M., Optimization of Chitosan-Polyvinylalcohol Electrospinning Process by Response Surface Methodology (RSM), e-Polymers, 035, 1-9, 2010.
  21. Gu S.Y., Ren J., and Vancso G.J., Process Optimization and Empirical Modeling for Electrospunpolyacrylonitrile (PAN) Nanofiber Precursor of Carbon Nanofibers, Polym. J., 41, 2559-2568, 2005.
  22. Amiraliyan N., Nouri M., and Haghighat Kish M., Electrospinning of Silk Nanofibers. I. An Investigation of Nanofiber Morphology and Process Optimization Using Response Surface Methodology, Fibers Poly, 10, 167-176, 2009.
  23. Nasouri K., Mousavi Shoushtari A., and Mohaddes Mojtahedi M.R., Evaluation of Effective Electrospinning Parameters Controlling Polyvinylpyrrolidone Nanofibers Surface Morphology via Response Surface Methodology, Fibers Polym., 16, 1941-1954, 2015.
  24. Bae J., Kim H., Park S., Kim K.S., and Choi H., Parametrization Study of Electrospun Nanofiber Including LiCl Using Response Surface Methodology (RSM) for Water Treatment Application, Sci., 10, 7295, 2020.
  25. Dadras Chomachayi M., Solouk A., and Mirzadeh H., Mathematical Modeling of Electrospinning Process of Silk Fibroin/Gelatin Nanofibrous Mat: Comparison of the Accuracy of GMDH and RSM Models, Ind. Text., 50, 1-20, 2020.
  26. Hicks Ch.R., Fundamental Concept in the Design of Experiments, Copyright by Holt, Rinehart and Winston, INC., 5th ed., 1999.
  27. Grabill F.A. and Iyer H.K., Regression Analysis: Concepts and Applications, Duxbury, 1994.
  28. Khuri A.I. and Cornell J.A., Response Surfaces (Design and Analyses), 2nd ed., Marcel Dekker, 1996.
  29. Lu G.C., Jeng S.L., and Wang K., A Review of Statistical Methods for Quality Improvement and Control in Nanotechnology, Quality Technol., 41, 2009.
  30. Nuran B., The Response Surface Methodology, MSc Thesis in Applied Mathematics and Computer Science, Department of Mathematical Science, Indiana University South Bend, 2007.