داربست‌های رسانای نانولیفی بر پایه صمغ تراگاگانت، پلی‌آنیلین و پلی(وینیل الکل): ساخت، مشخصه‌یابی و بررسی قابلیت کاربرد آن‌ها در مهندسی بافت پوست

نوع مقاله : پژوهشی

نویسندگان

1 تهران، دانشگاه پیام نور، دانشکده علوم، گروه شیمی، صندوق پستی 4697-19395

2 کرمانشاه، دانشگاه علوم پزشکی کرمانشاه، دانشکده داروسازی، کد پستی 47141-67158

10.22063/jipst.2023.3391.2233

چکیده

فرضیه: پوست بزرگ‌ترین اندام و نیز پوشش خارجی بدن است که به‌عنوان مانعی در برابر تهاجم‌های میکروبی و آسیب‌های مکانیکی و شیمیایی عمل می‌کند. اما، گاهی در برابر آسیب‌های واردشده، پوست به‌تنهایی قابلیت بازسازی بافت را ندارد. در این میان، مهندسی بافت راهکاری بازساختی و کارآمد در ترمیم آسیب‌های جدی بافت پوست است. مقاله حاضر به اهمیت داربست‌های رسانای تهیه‌شده از پلیمر طبیعی کتیرا و پلی‌آنیلین در مهندسی بافت پوست، به‌دلیل سمی‌نبودن، زیست‌سازگاری، سمی‌نبودن محصولات حاصل از زیست‌تخریب آن و نیز اثر رسانندگی الکتریکی داربست بر عملکرد مهندسی بافت پوست، اشاره دارد.
روش‌ها: در این پژوهش، داربست‌های هیدروژل نانولیفی رسانای الکتریسته متشکل از کتیرا آمیخته با پلی‌آنیلین (TG-B-PANI) و پلی(وینیل الکل) (PVA) به‌ترتیب با نسبت‌های وزنی 70:30 و 80:20 با روش الکتروریسی تهیه و خواص فیزیکی-شیمیایی و زیستی آن‌ها برای مهندسی بافت پوست با روش‌های مختلف مطالعه شد.
یافته‌ها: ساختار و خواص داربست‌های ساخته‌شده، با آزمون‌های تجزیه گرماوزن‌سنجی (TGA)، میکروسکوپ الکترونی پویشی (SEM)، طیف‌سنجی زیرقرمز تبدیل فوریه (FTIR) و فرابنفش-مرئی (UV-Vis) و ولت‌سنجی چرخه‌ای (CV) بررسی و شناسایی شد. تصاویر SEM ساخت الیاف یکنواخت با اندازه نانومتر را نشان داد. زیست‌سازگاری و قابلیت زنده‌مانی یاخته‌ها در داربست‌ها با روش MTT با استفاده از یاخته‌های فیبروبلاست L929 موش تأیید شد. همچنین، داربست‌های ساخته‌شده خاصیت خون‌سازگاری و جذب پروتئین آلبومین سرم انسانی خوبی را نشان دادند. داربست‌های ساخته‌شده خواص فیزیکی-شیمیایی و زیستی مناسبی را برای مهندسی بافت پوست نشان دادند. داربست ساخته‌شده با %20 وزنی از آمیخته پلیمری TG-B-PANI قابلیت بیشتری را نسبت به داربست با %30 وزنی، از نظر چسبندگی و زنده‌مانی یاخته‌های فیبروبلاست L929 موش، نشان داد. 

کلیدواژه‌ها


عنوان مقاله [English]

Conductive Nanofibrous Scaffolds Based on Tragacanth Gum, Polyaniline, and Poly(vinyl alcohol): Fabrication, Characterization and Exploring Their Potential Application in Skin Tissue Engineering

نویسندگان [English]

  • Shila Najafian 1
  • Mehdi Jaymand 2
  • Bakhshali Massoumi 1
1 Department of Chemistry, Payame Noor University, P.O. Box 19395-4697, Tehran, Iran
2 Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Postal Code 67158-47141, Kermanshah, Iran
چکیده [English]

Hypothesis: The skin is the largest organ and outer covering of the body, which acts as a barrier against microbial invasions as well as mechanical and chemical damage. But, sometimes the skin does not have the ability to regenerate the tissue on its own. In this context, tissue engineering (TE) is a promising and reconstructive solution for repairing serious skin tissue damage. This article refers to the importance of electerically conductive scaffolds based on tragacanth gum (TG) for skin TE owing to non-toxicity, metabolic compatibility, and the non-hazardous nature of its degradation products as well as the effect of electerical conductivity of the sacffold in performance of skin TE.
Methods: Electroconductive nanofibrous hydrogel scaffolds composed of tragacanth gam-polyaniline blend (TG-B-PANI) and poly(vinyl alcohol) (PVA) were fabricated with a weight ratios of 30:70 and 20:80 by electrospinning method. Their physicochemical and biological properties for skin TE application were studied by various experiments.  
Findings: The fabricated scaffolds were tested using FTIR, SEM, TGA, UV-Vis, and cyclic voltammetry (CV). SEM images indicated the achievement of uniform fibers within their nano-scale domain. The cytocompatibility and cells proliferation characteristics of the scaffolds were approved by MTT assay using L929 mouse fibroblast cells. The fabricated scaffolds exhibited excellent hemocompatibility and human serum albomin adsorption capacity. The fabricated scaffolds showed proper physicochemical and biological properties for skin TE. The scaffold made with 20% (wt) of TG-B-PANI showed higher potential in adhesion and proliferation of L929 mouse fibroblast cells than those of scaffold with 30% (wt) of the above polymeric blend. 

کلیدواژه‌ها [English]

  • Natural polymers
  • Tragacanth gum
  • electrospinning
  • Conductive polymeric scaffolds
  • Skin tissue engineering
  1. Gholipour-Kanani A., Bahrami H., Joghataie M.T., and Samadikuchaksaraei A., Nanofibrous Scaffolds Based on Poly(caprolactone)/Chitosan/Poly(vinyl alcohol) Blend for Skin Tissue Engineering, J. Polym. Sci. Technol. (Persian), 26,159-170, 2013.
  2. Amirsadeghi A., Jafari A., Eggermont L.J., Hashemi S-S., Bencherif S.A., and Khorram M., Vascularization Strategies for Skin Tissue Engineering, Sci., 8, 4073-4094, 2020.
  3. Zhang Z., Feng Y., Wang L., Liu D., Qin C., and Shi Y., A Review of Preparation Methods of Porous Skin Tissue Engineering Scaffolds, Today Commun., 32, 104109, 2022.
  4. Xu J., Fang H., Zheng S., Li L., Jiao Z., Wang H., Nie Y., Liu T., and Song K., A Biological Functional Hybrid Scaffold Based on Decellularized Extracellular Matrix/Gelatin/Chitosan with High Biocompatibility and Antibacterial Activity for Skin Tissue Engineering, J. Biol. Macromol., 187, 840-849, 2021.
  5. Sundaramurthi D., Krishnan U.M., and Sethuraman S., Electrospun Nanofibers as Scaffolds for Skin Tissue Engineering, Rev., 54, 348-376, 2014.
  6. Serag E., El-Aziz A.M.A., El-Maghraby A., and Taha N.A., Electrospun Non-Wovens Potential Wound Dressing Material Based on Polyacrylonitrile/Chicken Feathers Keratin Nanofiber, Rep., 12,1-14, 2022.
  7. Ranjbar-Mohammadi M. and Tajdar F., Gelatin/Polycaprolactone and Poly(vinyl alcohol)/Chitosan Hybrid Nanofibers: Determining Factors on Their Morphology, J. Polym. Sci. Tehcnol. (Persian), 35, 203-216, 2022.
  8. Khare D., Basu B., and Dubey A.K., Electrical Stimulation and Piezoelectric Biomaterials for Bone Tissue Engineering Applications, Biomater., 258, 120280, 2020.
  9. Arora D., Babakhanova G., and Simon C.G., Tissue Engineering Measurands, ACS Biomater. Sci. Eng., 6, 5368-5376, 2020.
  10. Kheilnezhad B., Safaei Firoozabady A., and Aidun A., An Overview of Polyaniline in Tissue Engineering, Tissue Eng., 3, 6-22, 2020.
  11. Massoumi B., Abbasian M., Jahanban-Esfahlan R., Mohammad-Rezaei R., Khalilzadeh B., Samadian H., Rezaei A., Derakhshankhah H., and Jaymand M., A Novel Bio-Inspired Conductive, Biocompatible, and Adhesive Terpolymer Based on Polyaniline, Polydopamine, and Polylactide as Scaffolding Biomaterial for Tissue Engineering Application, J. Biol. Macromol., 147, 1174-1184, 2020.
  12. Vandghanooni S. and Eskandani M., Electrically Conductive Biomaterials Based on Natural Polysaccharides: Challenges and Applications in Tissue Engineering, J. Biol. Macromol., 141, 636-662, 2019.
  13. Nejatian M., Abbasi S., and Azarikia F., Gum Tragacanth: Structure, Characteristics and Applications in Foods, J. Biol. Macromol., 160, 846-860, 2020.
  14. Jahanban-Esfahlan R., Soleimani K., Derakhshankhah H., Haghshenas B., Rezaei A., Massoumi B., Farnudiyan-Habibi A., Samadian H., and Jaymand M., Multi-stimuli-Responsive Magnetic Hydrogel Based on Tragacanth Gum as a de novo Nanosystem for Targeted Chemo/Hyperthermia Treatment of Cancer, Mater. Res., 36, 858-869, 2021.
  15. Sayadnia S., Arkan E., Jahanban-Esfahlan R., Sayadnia S., and Jaymand M., Tragacanth Gum-Based pH-Responsive Magnetic Hydrogels for “Smart” Chemo/Hyperthermia Therapy of Solid Tumors, Adv. Technol., 32, 262-271, 2021.
  16. Soleimani K., Derakhshankhah H., Jaymand M., and Samadian H., Stimuli-Responsive Natural Gums-Based Drug Delivery Systems for Cancer Treatment, Polym., 254, 117422, 2021.
  17. Zare E.N., Makvandi P., and Tay F.R., Recent Progress in the Industrial and Biomedical Applications of Tragacanth Gum: A Review, Polym., 212, 450-467, 2019.
  18. Ahmadian M., Derakhshankhah H., and Jaymand M., Biosorptive Removal of Organic Dyes Using Natural Gums-Based Materials: A Comprehensive Review, Ind. Eng. Chem., 124, 102-131, 2023.
  19. Raoufi N., Kadkhodaee R., Fang Y., and Phillips G.O., Ultrasonic Degradation of Persian Gum and Gum Tragacanth: Effect on Chain Conformation and Molecular Properties, Ultrason Sonochem., 52, 311-317, 2019.
  20. DeMerlis C.C. and Schoneker D.R., Review of the Oral Toxicity of Polyvinyl Alcohol (PVA), Food Chem. Toxicol., 41, 319-326, 2003.
  21. Jiang S., Liu S., and Feng W., PVA Hydrogel Properties for Biomedical Application, Mech. Behav. Biomed. Mater., 4, 1228-1233, 2011.
  22. Garrudo F.F., Chapman C.A., Hoffman P.R., Udangawa R.W., Silva J.C., Mikael P.E., and Rodrigues C.A.V., Polyaniline-Polycaprolactone Blended Nanofibers for Neural Cell Culture, Polym. J., 117, 28-37, 2019.
  23. Li M., Guo Y., Wei Y., Mac-Diarmid A.G., Lelkes P.I., Electrospinning Polyaniline-Contained Gelatin Nanofibers for Tissue Engineering Applications, Sci., 27, 2705-2715, 2006.
  24. Fryczkowski R. and Kowalczyk T., Nanofibres from Polyaniline/Polyhydroxybutyrate Blends, Met., 159, 2266-2268, 2009.
  25. Bertuoli P.T., Ordono J., Armelin E., Perez-Amodio S., Baldissera A.F., Ferreira C.A., Puiggali J., Engel E., Del-Valle L.J., and Aleman C., Electrospun Conducting and Biocompatible Uniaxial and Core–Shell Fibers Having Poly(lactic acid), Poly(ethylene glycol), and Polyaniline for Cardiac Tissue Engineering, ACS Omega, 4, 3660-3672, 2019.
  26. Farzi M., Saffari M.M., Emam-Djomeh Z., and Mohammadifar M.A., Effect of Ultrasonic Treatment on the Rheological Properties and Particle size of Gum Tragacanth Dispersions from Different species, J. Food Sci. Technol., 46, 849-854, 2011.
  27. Sharma K., Kaith B.S., Kumar V., Kumar V., Som S., Kalia S., and Swartb H.C., Synthesis and Properties of Poly(acrylamide-aniline)-grafted Gum Ghatti Based Nanospikes, RSC Adv., 3, 25830-25839, 2013.
  28. Eskandani M., Derakhshankhah H., Jahanban-Esfahlan R., and Jaymand M., Folate-Conjugated pH- and Redox-Responsive Magnetic Hydrogel Based on Tragacanth Gum for “Smart” Chemo/Hyperthermia Treatment of Cancerous Cells, Drug Deliv. Sci. Technol., 84,104449, 2023.
  29. Derakhshankhah H., Eskandani M., Akbari Nakhjavani S., Tasoglu S., Vandghanooni S., and Jaymand M., Electro-Conductive Silica Nanoparticles-Incorporated Hydrogel Based on Alginate as a Biomimetic Scaffold for Bone Tissue Engineering Application, J. Polym. Mater. Polym. Biomater., 2023 (In Press).
  30. Sasidharan A., Panchakarla L.S., Sadanandan A.R., Ashokan A., Chandran P., Girish C.M., Menon , Nair Sh.V., Rao C.N.R., and Koyakutty M., Hemocompatibility and Macrophage Response of Pristine and Functionalized Graphene, Small, 8, 1251-1263, 2012.
  31. Hatamzadeh M., Najafi-Moghadam P., Beygi-Khosrowshahi Y., Massoumi B., and Jaymand M., Electrically Conductive
    Nanofibrous Scaffolds Based on Poly(ethylene glycol)s-
    Modified Polyaniline and Poly(ε-caprolactone) for Tissue Engineering Applications, RSC Adv, 6, 105371-105386, 2016.
  32. Massoumi B., Hatamzadeh M., Firouzi N., and Jaymand M., Electrically Conductive Nanofibrous Scaffold Composed of Poly(ethylene glycol)-Modified Polypyrrole and Poly(ε-caprolactone) for Tissue Engineering Applications, Sci. Eng. C: Mater. Biol. Appl. ., 98, 300-310, 2019.
  33. Massoumi B., Davtalab S., Jaymand M., and Entezami A.A., AB2 Y-Shaped Miktoarm Star Conductive Polyaniline-Modified Poly(ethylene glycol) and Its Electrospun Nanofiber Blend with Poly(ε-caprolactone), RSC Adv., 5, 36715-36726, 2015.
  34. Abedi A., Bakhshandeh B., Babaie A., Mohammadnejad J., Vahdat S., Mombeiny R., Moosavi S.R., Amini J., and Tayebi L., Concurrent Application of Conductive Biopolymeric Chitosan/Polyvinyl Alcohol/ MWCNTs Nanofibers, Intracellular Signaling Manipulating Molecules and Electrical Stimulation for More Effective Cardiac Tissue Engineering, Chem. Phys., 258, 123842, 2021.
  35. Wang W., Caetano G., Ambler W.S., Blaker J.J., Frade M.A., Mandal P., Diver C., and Bartolo P., Enhancing the Hydrophilicity and Cell Attachment of 3D Printed PCL/Graphene Scaffolds for Bone Tissue Engineering, Mater., 9, 992, 2016.
  36. Wei Z., Gu J., Ye Y., Fang M., Lang J., Yang D., and Pan Z., Biodegradable Poly(butylene succinate) Nanofibrous Membrane Treated with Oxygen Plasma for Superhydrophilicity, Coat. Technol., 381,125147, 2020.
  37. Li D-q., Wang S-y., Meng Y-j., Guo Z-W., and Cheng M-M., Li J., Fabrication of Self-Healing Pectin/Chitosan Hybrid Hydrogel via Diels-Alder Reactions for Drug Delivery with High Swelling Property, pH-Responsiveness, and Cytocompatibility, Polym., 268, 118244, 2021.
  38. Switha D., Basha S.K., and Kumari V.S., In Vitro Cytocompatibility Evaluation of Nanostarch Reinforced Polyaniline-Polyvinyl Alcohol Conductive Bionanocomposites for Skin Tissue Engineering Application, Umm Al-Qura Univ-Appl. Sci., 9, 252-259, 2023.
  39. Hatamzadeh M., Najafi-Moghadam P., Baradar-Khoshfetrat A., Jaymand M., and Massoumi B., Novel Nanofibrous Electrically Conductive Scaffolds Based on Poly(ethylene glycol)s-Modified Polythiophene and Poly(ε-caprolactone) for Tissue Engineering Applications, J., 107, 177-190, 2016.
  40. Jahanban-Esfahlan R., Derakhshankhah H., Haghshenas B., Massoumi B., Abbasian M., and Jaymand M., A Bio-Inspired Magnetic Natural Hydrogel Containing Gelatin and Alginate as a Drug Delivery System for Cancer Chemotherapy, J. Biol. Macromol., 156, 438-445, 2020.
  41. Balaji A., Jaganathan S.K., Ismail A.F., and Rajasekar R., Fabrication and Hemocompatibility Assessment of Novel Polyurethane-Based Bio-nanofibrous Dressing Loaded with Honey and Carica Papaya Extract for the Management of Burn Injuries, J. Nanomed., 11, 4339, 2016.
  42. Kenawy E-RS., Kamoun E.A., Eldin M.S., Soliman H.M., EL-Moslamy S.H., El-Fakharany E.M., and Shokr A-B.M., Electrospun PVA–Dextran Nanofibrous Scaffolds for Acceleration of Topical Wound Healing: Nanofiber Optimization, Characterization and In Vitro Assessment, J. Sci. Eng., 48, 205-222, 2023.