ارزیابی ذخیره‌سازی انرژی گرمایی ماده تغییر فاز نانوکپسول‌دارشده با هسته پلی(اتیلن گلیکول) و پوسته پلی‌استیرن رسانای گرما برای کاربرد در سیال انتقال گرما

نوع مقاله : پژوهشی

نویسندگان

1 تهران، دانشگاه تربیت مدرس، دانشکده مهندسی شیمی، گروه مهندسی پلیمر، صندوق پستی 114-14115

2 ایرلند، آتلون، خیابان دانشگاه، شماره N37HD68، دانشگاه صنعتی شانون، مؤسسه پژوهشی PRISM

10.22063/jipst.2023.3428.2250

چکیده

فرضیه‌: مواد تغییرفاز جامد-مایع، از جمله موادی هستند که برای ذخیره انرژی گرمایی به‌کار می‌روند. با نانوکپسول‌دارشدن این مواد، می‌توان مشکل نشتی طی ذوب‌شدن را برطرف کرد و کارایی گرمایی سامانه را افزایش داد. پژوهشگران در پژوهش‌های پیشین از روش‌های پیچیده و پرهزینه‌ای برای تهیه نانوکپسول‌ها‌ استفاده کرده‌اند. در این پژوهش، برای آسانی سنتز و کاهش زمان و هزینه‌های فرایند، از اختلاف پارامتر حل‌پذیری مواد هسته و پوسته در دما‌های مختلف و تقدم و تأخر در جدایی فاز به‌منظور سنتز نانو‌کپسول‌ها استفاده شده است.
روش‌ها: به‌منظور ساخت نانو‌کپسول پلی(‌اتیلن گلیکول) با پوسته پلی‌‌استیرن رسانای گرما، از اختلاف پارامتر حل‌پذیری پلی(‌اتیلن گلیکول)، پلی‌استیرن و تولوئن در دماهای 5، 25 و 80 درجه سلسیوس استفاده شد. در واقع، این تغییر در پارامتر حل‌پذیری موجب ایجاد محلول همگنی از این سه ماده در دمای 80 درجه سلسیوس می‌شود. با کاهش دما به 25 درجه سلسیوس، هسته‌گذاری اولیه شکل می‌گیرد و نانوذرات پلی(اتیلن‌گلیکول) جامد به‌طور کامل جدا  می‌شوند. در ادامه با کاهش دما به 5 درجه سلسیوس پلی‌استیرن نیز از محلول جدا می‌شود و به‌طور کامل نانوذرات پلی(اتیلن‌گلیکول) را پوشش می‌دهد. بدین ترتیب به روش ته‌نشینی با گرادیان دما ابتدا نانوذرات پلی(‌اتیلن گلیکول) سنتز شدند. سپس با ته‌نشینی پلی‌استیرن، نانوذرات پلی‌(اتیلن‌گلیکول) پوشش یافتند. همچنین برای افزایش رسانندگی گرمایی پوسته و کارایی گرمایی سامانه، از نانوذرات کربن در پوسته پلی‌استیرن استفاده شده است.
یافته‌ها: بررسی شکل‌شناسی محصول سنتزی در این پژوهش ایجاد نانو‌کپسول هسته-پوسته پلی(اتیلن‌گلیکول-پلی‌استیرن را تأیید می‌کند. کارایی جذب انرژی گرمایی سیال انتقال گرمای تهیه‌شده از این نانوذرات در دمای کاربری 55 درجه سلسیوس حدود %17 بیشتر از آب خالص است. 

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Thermal Energy Storage of Phase Change Materials Based on Polyethylene Glycol Core and Thermal Conductive Polystyrene Shell for Heat Transfer Fluid Applications

نویسندگان [English]

  • Elnaz Talebi 1
  • Golnoosh Abdeali 2
  • Ahmad Reza Bahramian 1
1 Department of Polymer Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-114, Tehran, Iran
2 PRISM Research Institute, Technological University of the Shannon, University Road, N37HD68 Athlone, Ireland
چکیده [English]

Hypothesis: Solid/liquid phase change materials (PCMs) are among the materials used to store thermal energy. By nanoencapsulating these materials, the problem of leakage during melting can be solved and the thermal efficiency of the system can be increased. In previous studies, researchers have used complex and expensive methods to prepare nanocapsules of PCM. In this work, in order to simplify and reduce the time and costs of the synthesis process, the difference in the solubility parameter of the core and shell materials at different temperatures and the sequence in phase separation have been used for the synthesis of PCM nanocapsules.
Methods: In order to make the desired PCM nanocapsule, the difference in solubility parameters of polyethylene glycol, polystyrene and toluene at temperatures of 5, 25 and 80ºC has been used. In fact, this difference in the solubility parameter creates a homogeneous solution of these three substances at a temperature of 80ºC. By decreasing the temperature to 25°C, primary cores are formed and solid polyethylene glycol nanoparticles are completely separated. Further, by decreasing the temperature to 5ºC, polystyrene is separated from the solution and completely covers the nanoparticles of polyethylene glycol. In this way, using the sedimentation with temperature gradient method, polyethylene glycol nanoparticles were first synthesized, and polyethylene glycol nanoparticles were coated with polystyrene deposition. Also, to increase the thermal conductivity of the shell and the thermal efficiency of the PCM system, carbon nanoparticles have been used in polystyrene shells. 
Findings: Examining and evaluating the morphology of the synthesis PCM system in this work confirmed the creation of a polyethylene glycol/polystyrene core/shell nanocapsule. The thermal energy absorption efficiency of the heat transfer fluid prepared from these nanoparticles at the applied temperature of 55ºC is about 17% more than that of water.

کلیدواژه‌ها [English]

  • nanocapsoule
  • phase change materials
  • heat transfer fluid
  • thermal energy storage
  • sedimentation with temperature gradient method
  1. Zhu S., Zhao X., Huang L., and Zou D., Preparation and Thermal Performance of a Novel Alloy Microencapsulated Phase Change Material (MEPCM)/Ceramic Composite,  J. Therm. Sci.176, 107478, 2022.
  2. Kalapala L. and Devanuri J.K., Influence of Operational and Design Parameters on the Performance of a PCM Based Heat Exchanger for Thermal Energy Storage–A Review,  Energy Storage,20, 497-519, 2018.
  3. Xu B., Wei Z., Hong X., Zhou Y., Gan S., and Shen M., Preparation and Characterization of Novel Microencapsulated Phase Change Materials with SiO2/FeOOH as the Shell for Heat Energy Storage and Photocatalysis,  Energy Storage43, 103251, 2021.
  4. Sarı A., Saleh T.A., Hekimoğlu G., Tyagi V.V., and Sharma R.K., Microencapsulated Heptadecane with Calcium Carbonate as Thermal Conductivity-Enhanced Phase Change Material for Thermal Energy Storage,  Mol. Liq.328, 115508, 2021.
  5. Mo S., Zhang G., Li Y., Chen J., Jia L., Wang Z., and Chen Y., Copper-Coated Phase Change Nanocapsules with Improved Thermal Properties Synthesized by a Green Method,  Sci. Eng., B296, 116659, 2023.
  6. Kazemi A., Naseri I., and Bahramian A.R., Thermal Protection Performance of Carbon Aerogels Filled with Magnesium Chloride Hexahydrate as a Phase Change Material, J. Polym. Sci. Technol. (Persian)26, 525-535, 2014.
  7. Norooz Kermanshahi P. and Soares G.M.B., Production, Characterization and Application of Nano-Phase Change Materials: A Review,  J. Text. Nano-bio Modification1, 9-22, 2022.
  8. Chen S., Liu H., and Wang X., Pomegranate-Like Phase-Change Microcapsules Based on Multichambered TiO2 Shell Engulfing Multiple n-Docosane Cores for Enhancing Heat Transfer and Leakage Prevention,  Energy Storage51, 104406, 2022.
  9. Kwon H.J., Cheong I.W., and Kim J.H., Preparation of n-Octadecane Nanocapsules by Using Interfacial Redox Initiation in Miniemulsion Polymerization,  Res.18, 923-926, 2010.
  10. Jamshidi H. and Mahdavian A.R., Rol of Polymers in Developing Phase Change Materials for Energy Storage: A Review on Encapsulation Methods and Their Applications,  J. Polym. Sci. Technol. (Persian)33, 179-212, 2020.
  11. Huang Y., Stonehouse A., and Abeykoon C., Encapsulation Methods for Phase Change Materials–A Critical Review,  J. Heat Mass Transf.200, 123458, 2023.
  12. Latibari S.T., Mehrali M., Mehrali M., Afifi A.B.M., Mahlia T.M.I., Akhiani A.R., and Metselaar H.S.C., Facile Synthesis and Thermal Performances of Stearic Acid/Titania Core/Shell Nanocapsules by Sol–Gel Method, Energy85, 635-644, 2015.
  13. Ji W., Cheng X., Chen S., Wang X., and Li Y., Self-Assembly Fabrication of GO/TiO2@ Paraffin Microcapsules for Enhancement of Thermal Energy Storage, Powder Technol.385, 546-556, 2021.
  14. Zhu Y., Chi Y., Liang S., Luo X., Chen K., Tian C., and Zhang L., Novel Metal Coated Nanoencapsulated Phase Change Materials with High Thermal Conductivity for Thermal Energy Storage, Solar Energy Mater. Solar Cells176, 212-221, 2018.
  15. Arshad A., Jabbal M., Yan Y., and Darkwa J., The Micro/Nano-PCMs for Thermal Energy Storage Systems: A State of Art Review, J. Energy Res.43, 5572-5620, 2019.
  16. Sivanathan A., Dou Q., Wang Y., Li Y., Corker J., Zhou Y., and Fan M., Phase Change Materials for Building Construction: An Overview of Nano-/Micro-Encapsulation,  Rev.9, 896-921, 2020.
  17. Albdour S.A., Haddad Z., Sharaf O.Z., Alazzam A., and Abu-Nada E., Micro/Nano-Encapsulated Phase-change Materials (ePCMs) for Solar Photothermal Absorption and Storage: Fundamentals, Recent Advances, and Future Directions,  Energy Combust. Sci.93, 101037, 2022.
  18. Nikpourian H., Bahramian A.R., and Abdollahi M., On the Thermal Performance of a Novel PCM Nanocapsule: The Effect of Core/Shell,  Energy151, 322-331, 2020.
  19. Hussain S.I. and Kalaiselvam S., Nanoencapsulation of Oleic Acid Phase Change Material with Ag2O Nanoparticles-Based Urea Formaldehyde Shell for Building Thermal Energy Storage,  Therm. Anal. Calorim.140, 133-147, 2020.
  20. , Erdoğan T., and Barlak S., The Stability and Thermophysical Properties of a Thermal Fluid Containing Surface-Functionalized Nanoencapsulated PCM, Thermochimica Acta682, 178406, 2019.
  21. Zhang K., Wang J., Xu L., Xie H., and Guo Z., Preparation and Thermal Characterization of n-Octadecane/Pentafluorostyrene Nanocapsules for Phase-change Energy Storage,  Energy Storage35, 102327, 2021.
  22. Shi J., Wu X., Sun R., Ban B., Li J., and Chen J., Nano-Encapsulated Phase Change Materials Prepared by One-step Interfacial Polymerization for Thermal Energy Storage,  Chem. Phys.231, 244-251, 2019.
  23. Yuan H., Bai H., Zhang X., Zhang J., Zhang Z., and Yang L., Synthesis and Characterization of Stearic Acid/Silicon Dioxide Nanoencapsules for Solar Energy Storage, Solar Energy173, 42-52, 2018.
  24. Ayyaril S.S., Shanableh A., Bhattacharjee S., Rawas-Qalaji M., Cagliani R., and Shabib A.G., Recent Progress in Micro and Nano-Encapsulation Techniques for Environmental Applications: A Review,  Eng., 18, 101094, ‏2023.
  25. Song S., Qiu F., Zhu W., Guo Y., Zhang Y., Ju Y., and Dong L., Polyethylene Glycol/Halloysite@ Ag Nanocomposite PCM for Thermal Energy Storage: Simultaneously High Latent Heat and Enhanced Thermal Conductivity, Solar Energy Mater. Solar Cells193, 237-245, 2019.
  26. Li M. and Mu B., Effect of Different Dimensional Carbon Materials on the Properties and Application of Phase Change Materials: A Review,  Energy242, 695-715, 2019.
  27. Haghir Madadi M., Bahramian A., and Hadizade Raeisi H., Improvement in Ablation and Thermal Properties of Ultra-Lightweight Silicone/Cork Composites Insulator Using Novolac Aerogel,  J. Polym. Sci. Technol. (Persian)30, 517-529, 2018.
  28. Hajizadeh A., Bahramian A.R., Seifi A., and Naseri I., Effect of Initial Sol Concentration on the Microstructure and Morphology of Carbon Aerogels, Sol-Gel Sci. Technol., 73, 220-226, 2015.
  29. Fang Y., Liu X., Liang X., Liu H., Gao X., and Zhang, Z., Ultrasonic Synthesis and Characterization of Polystyrene/n-Dotriacontane Composite Nanoencapsulated Phase Change Material for Thermal Energy Storage,  Energy132, 551-556, 2014.
  30. Chafidz A., Astuti W., Augustia V., Novira D.T., and Rofiah N., Removal of Methyl Violet Dye via Adsorption Using Activated Carbon Prepared from Randu Sawdust (Ceiba pentandra), IOP Conference Series: Earth Environ. Sci., 167, 012013, 2018.
  31. Milne , Ritchie R.O., and Karihaloo B.L., Polymer Solubility and Compatibility, Comprehensive Structural Integrity, Chapt. 3, , Elsevier Science, 1st ed., 2003.
  32. Tumuluri K., Alvarado J.L., Taherian H., and Marsh C., Thermal Performance of a Novel Heat Transfer Fluid Containing Multiwalled Carbon Nanotubes and Microencapsulated Phase Change Materials, J. Heat Mass Transfer, 54, 5554-5567, 2011.
  33. Moshtagh M., Jamekhorshid A., Azari A., and Bazai H., An Experimental Investigation of Convective Heat Transfer of Slurry Phase Change Material in a Tube with Butterfly Tube Inserts, Amirkabir J. Mech. Eng. (Persian), 52, 1561-1576, 2020.