مروری بر عوامل پخت تأخیری-گرمایی رزین اپوکسی

نوع مقاله: مروری

نویسندگان

1 مازندران، دانشگاه مازندران، دانشکده فنی و مهندسی، گروه مهندسی شیمی، صندوق پستی 13534-47416

2 تهران، پژوهشگاه پلیمر و پتروشیمی ایران، پژوهشکده فرایند، گروه کامپوزیت، صندوق پستی 112-14975

چکیده

رزین‌های اپوکسی به دلیل خواص فیزیکی و مکانیکی و نیز مقاومت گرمایی، الکتریکی و شیمیایی خوب، به‌طور گسترده در صنایع کامپوزیت، هوافضا، ساختمان، الکترونیک، چسب و پوشش به‌کار گرفته می‌شوند. رزین‌های اپوکسی برای پخت‌ به‌ مواد شیمیایی نیاز دارند که عوامل پخت یا سخت‌کننده نامیده می‌شوند. این مواد، شرایط فراورش و خواص نهایی سامانه رزین را تحت تأثیر قرار می‌دهند. در حالت کلی، عوامل پخت اپوکسی‌ها را می‌توان به دو گروه معمولی (پخت محیطی یا پخت گرمایی) و تأخیری دسته‌بندی کرد. افزودن عوامل پخت معمولی به رزین برای انجام واکنش‌های شبکه‌ای‌شدن حتی در دمای محیط، سبب افزایش تدریجی گرانروی می‌َشود و در نهایت رزین ژل شده و پخت می‌شود. اما، عوامل پخت تأخیری پس از افزوده‌شدن به رزین در دمای محیط واکنشی انجام نمی‌دهند و گرانروی آمیزه تغییر نمی‌کند، بنابراین، برای تهیه سامانه‌های تک‌جزئی رزین اپوکسی استفاده می‌شود. این عوامل پخت در شرایط معمول فعال نیستند و با رزین واکنشی نمی‌دهند. اما، با اعمال محرک خارجی مانند نور و گرما فعال می‌شوند. از آنجا که مهم‌ترین محرک خارجی گرماست، بنابراین عوامل پخت تأخیری از پرکاربردترین و رایج‌ترین عوامل پخت تأخیری-گرمایی هستند. عوامل پخت تأخیری-گرمایی شامل عوامل پخت تأخیری دارای هیدروژن فعال، کاتالیزی و محافظت‌شده با گروه‌های شیمیایی و میکروکپسولی‌‌ها هستند. عوامل پخت محافظت‌شده با گروه‌های شیمیایی عوامل پخت دارای هیدروژن فعال معمولی هستند که با گروه‌های شیمیایی محافظت می‌شوند. انتخاب نوع سامانه تأخیری موضوع مهمی بوده و بر شرایط فراورش و خواص نهایی رزین پخت‌شده بسیار اثرگذار است. در این مقاله آخرین یافته‌ها در این باره مرور شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Thermally-Latent Curing Agents for Epoxy Resins: A Review

نویسندگان [English]

  • Sayed Morteza Mozaffari 1
  • Mohammad Hosain Beheshty 2
1 1. Department of Chemical Engineering, Faculty of Engineering, Mazandaran University, P.O. Box 47416-13534, Mazandaran, Iran
2 Department of Composites, Faculty of Processing, Iran Polymer and Petrochemical Institute, P.O. Box: 14975-112, Tehran, Iran
چکیده [English]

Epoxy resins are widely used in composites, aerospace, construction, electronic, adhesive and coatings industries due to their high physical and mechanical, thermal resistance, electrical and chemical properties. For curing epoxy resins, a chemical material, called curing agent or hardener, must be used. Curing agents have strong effect on the processing conditions and final properties of the cured resins. In general, epoxy curing agents can be classified in two groups of normal (room or high temperature) and latent curing agents. Normal curing agents increase the resin viscosity at room temperature due to crosslinking or curing reactions and the resin is gelled and finally cured. The rate of viscosity increment would be different and depends on the kind of curing agent. On the other hand, latent curing agents cannot react with epoxy resin at room temperature and do not increase the resin viscosity. Therefore, they are being used for preparing one-part epoxy resins. Latent curing agents are not active at room temperature, but they will react with epoxy resin by the application of an external force like heat or light. Thermally-latent curing agents are well-known and they are widely used. They include substances with active hydrogen, and are catalyzed and protected by chemical groups and microcapsules. Selection of a latent curing system for an application is an important issue which affects the processing conditions and final properties of the cured resins. In this paper, the latest achievements in this area are reviewed.

کلیدواژه‌ها [English]

  • epoxy resin
  • hardener
  • latent curing agent
  • composite
  • viscosity
  1. Komatsu H., Ochiai B., Hino T., and Endo T., Thermally Latent Reaction of Hemiacetal Ester with Epoxide Controlled by Schiff-base-Zinc Chloride Complexes with Tunable Catalytic Activity, J. Molecul. Catal. A: Chem., 273, 289-297, 2007.
  2. Koczak M.J., Khatri S.C., Allison J.E., and Bader M.G., Metal-Matrix Composites for Ground Vehicle, Aerospace, and Industrial Applications, 1st ed. Butterworth-Heinemann, 16, 297-326, 1993.
  3. Nazarpour-Fard H., Rad-Moghadam K., Shirini F., Beheshty M.H., and Asghari G.H., Reinforcement of Epoxy Resin/Carbon Fiber Composites by Carboxylated Carbon Nanotubes: a Dynamic Mechanical Study, Polimery, 63, 253-263, 2018.
  4. Yarovsky I. and Evans E., Computer Simulation of Structure and Properties of Crosslinked Polymers: Application to Epoxy Resins, Polymer, 43, 963-969, 2002.
  5. Jin F.L., Li X., and Park S. J., Synthesis and Application of Epoxy Resins: A Review, J. Indust. Eng. Chem., 29, 1-11, 2015.
  6. Vafayan M., Ghoreishy M.H.R., Abedini H., and Beheshty M.H., Development of an Optimized Thermal Cure Cycle for a Complex-Shape Composite Part Using a Coupled Finite Element/Genetic Algorithm Technique, Iran. Polym. J., 24, 459-469, 2015.
  7. Eldin S.H., Maurer J., Peyer R.P., Grieshaber P., and Rime F., Epoxy Resin with Anhydride, Toughener and Active Hydrogen-Containing Compound, US Pat., 5,789,482,1998.
  8. Wegmann A., Chemical Resistance of Waterborne Epoxy/Amine Coatings, Prog. Org. Coat., 32, 231-239, 1997.
  9. Srividhya M., Lakshmi M.S., and Reddy B.S.R., Chemistry of Siloxane Amide as a New Curing Agent for Epoxy Resins: Material Characterization and Properties, Macromol. Chem. Phys., 206, 2501-2511, 2005.
  10. Rubinsztajn M.I. and Rubinsztajn S., Composition Comprising Silicone Epoxy Resin, Hydroxyl Compound, Anhydride and Curing Catalyst,US Pat. 6,632,892, 2003.
  11. Ma S., Liu X., Jiang Y., Tang Z., Zhang C., and Zhu J., Bio-based Epoxy Resin from Itaconic Acid and Its Thermosets Cured with Anhydride and Comonomers, Green Chem., 15, 245-254, 2013.
  12. Pham H.Q. and Marks M.J., Epoxy Resins, Ullmann’s Encyclopedia of Industrial Chemistry, 2000.
  13. Kugler S., Kowalczyk K., and Spychaj T., Influence of Synthetic and Bio-based Amine Curing Agents on Properties of Solventless Epoxy Varnishes and Coatings with Carbon Nanofillers, Prog. Org. Coat., 109, 83-91, 2017.
  14. Shiobara T., Sawada J., Wakao M., Kashiwagi T., Miyagawa N., Kawada Y., Sasaki C., and Taniguchi N., Silicone-modified Epoxy Resin, Composition Containing the Epoxy Resin, and Cured Product of Same,US Pat. 9,963,542, 2018.
  15. Zafar S., Riaz U., and Ahmad S., Water-Borne Melamine-Formaldehyde-Cured Epoxy-Acrylate Corrosion Resistant Coatings, J. Appl. Polym. Sci., 107, 215-222, 2008.
  16. Meyer K.J., Hunter G.A., Potts D.L., and Ritter W.L., A Curable Epoxy Resin Composition and a Curative Therefore,US Pat. App. 15/505,629, 2017.
  17. Khalina M., Beheshty M.H., and Salimi A., Preparation and Characterization of DGEBA/EPN Epoxy Blends with Improved Fracture Toughness, Chinese J. Polym. Sci., 36, 632-640, 2018.
  18. Watts J.F., Abel M.L., Perruchot C., Lowe C., Maxted J.T., and White R.G., Segregation and Crosslinking in Urea Formaldehyde/Epoxy Resins: A Study by High-Resolution XPS, J. Electron. Spectrosc. Relat. Phenomena, 121, 233-247, 2001.
  19. Walker J., One Part Epoxy-Based Composition, US Pat. App. 15/547,983, 2018.
  20. Perez M.A. and Higgins J.M., High Temperature Stable, One-Part, Curable Thermoset Compositions, US Pat. App. 15/573,710, 2018.
  21. Chernack M., Pressure Sensitive Adhesive Composition, US Pat. 4,940,852, 1990.
  22. Endruweit A., Johnson M.S., and Long A.C., Curing of Composite Components by Ultraviolet Radiation: A Review, Polym. Compos., 27, 119-128, 2006.
  23. Kreibich U.T. and Schmid R., Inhomogeneities in Epoxy Resin Networks, J. Polym. Sci.: Polym. Symposia, 53, 177-185, 1975.
  24. Güthner T. and Hammer B., Curing of Epoxy Resins with Dicyandiamide and Urones, J. Appl. Polym. Sci., 50, 1453-1459, 1993.
  25. Wu F., Zhou X., and Yu X., Reaction Mechanism, Cure Behavior and Properties of a Multifunctional Epoxy Resin, TGDDM, with Latent Curing Agent Dicyandiamide, RSC Adv., 8, 8248-8258, 2018.
  26. Hagnauer G.L. and Dunn D.A., Dicyandiamide Analysis and Solubility in Epoxy Resins, J. Appl. Polym. Sci., 26, 1837-1846, 1981.
  27. Hayaty M., Beheshty M.H., and Esfandeh M., Cure Kinetics of a Glass/Epoxy Prepreg by Dynamic Differential Scanning Calorimetry, J. Appl. Polym. Sci., 120, 62-69, 2011.
  28. Hayaty M., Beheshty M.H., and Esfandeh M., A New Approach for Determination of Gel Time of a Glass/Epoxy Prepreg, J. Appl. Polym. Sci., 120, 1483-1489, 2011.
  29. Hayaty M., Beheshty M.H., and Esfandeh M., Isothermal Differential Scanning Calorimetry Study of a Glass/Epoxy Prepreg, Polym. Adv. Technol., 22, 1001-1006, 2011.
  30. Hayaty M., Honarkar H., and Beheshty M.H., Curing Behavior of Dicyandiamide/Epoxy Resin System Using Different Accelerators, Iran. Polym. J., 22, 591-598, 2013.
  31. Saunders T.F., Levy M.F., and Serino J.F., Mechanism of the Tertiary Amine-Catalyzed Dicyandiamide Cure of Epoxy Resins, J. Polym. Sci. Part A-1: Polym. Chem., 5, 1609-1617, 1967.
  32. Hesabi M., Salimi A., and Beheshty M.H., Effect of Tertiary Amine Accelerators with Different Substituents on Curing Kinetics and Reactivity of Epoxy/Dicyandiamide System, Polym. Test., 59, 344-354, 2017.
  33. Yamada T., Okumoto T., Ohtani H., and Tsuge S., Characterization of Epoxy Resins Cured with Dicyandiamide in the Presence of Imidazole Catalysts by High-Resolution Pyrolysis Gas Chromatography, J. Analy. Appl. Pyrol., 33, 157-166, 1995.
  34. Son P.-N. and Weber C.D., Some Aspects of Monuron-Accelerated Dicyandiamide Cure of Epoxy Resins, J. Appl. Polym. Sci., 17, 1305-1313, 1973.
  35. Galledari N.A., Beheshty M.H., and Barmar M., Effect of NBR on Epoxy/Glass Prepregs Properties, J. Appl. Polym. Sci., 123, 1597-1603, 2012.
  36. Jamshidi H., Akbari R., and Beheshty M.H., Toughening of dicyandiamide-cured DGEBA-Based Epoxy Resins Using Flexible Diamine, Iran. Polym. J., 24, 399-410, 2015.
  37. Razavi S.M.J., Neisiany R.E., Khorasani S.N., Ramakrishna S., and Berto F., Effect of Neat and Reinforced Polyacrylonitrile Nanofibers Incorporation on Interlaminar Fracture Toughness of Carbon/Epoxy Composite, Theor. Appl. Mech. Lett., 8, 126-131, 2018.
  38. Mahnam N., Beheshty M.H., Barmar M., and Shervin M., Modification of Dicyandiamide-Cured Epoxy Resin with Different Molecular Weights of Polyethylene Glycol and Its Effect on Epoxy/Glass Prepreg Characteristics, High Perform. Polym., 25, 705-713, 2013.
  39. Saha  A., Kumar R., Kumar R., and Devakumar C., Development
    and Assessment of Green Synthesis of Hydrazides, Indian J. Chem. Section B, 49,526-531, 2010.
  40. Tomuta A.M., Ramis X., Ferrando F., and Serra A., The Use of Dihydrazides as Latent Curing Agents in Diglycidyl Ether of Bisphenol A Coatings, Prog. Org. Coat., 74, 59-66, 2012.
  41. Zhang B.L., Zhang H.Q., You Y.C., Du Z.J., Ding P.Y., and Wang T.,  Application of a Series of Novel Chain-Extended Ureas as Latent-Curing Agents and Toughening Modifiers for Epoxy Resin, J. Appl. Polym. Sci., 69, 339-347, 1998.
  42. Chiu Y.S., Liu Y.L., Wei W.L., and Chen W.Y., Using Diethylphosphites as Thermally Latent Curing Agents for Epoxy Compounds, J. Polym. Sci. Part A: Polym. Chem., 41, 432–440, 2003.
  43. Ryu J.H., Choi K.S., and Kim W.G., Latent Catalyst Effects in Halogen-Free Epoxy Molding Compounds for Semiconductor Encapsulation, J. Appl. Polym. Sci., 96, 2287-2299, 2005.
  44. Kim W.G., Yoon H.G., and Lee J.Y., Cure Kinetics of Biphenyl Epoxy Resin System Using Latent Catalysts, J. Appl. Polym. Sci., 81, 2711-2720, 2001.
  45. Hamerton I., Hay J.N., Howlin B.J., Jepson P., and Mortimer S., The Development of Controllable Complex Curing Agents for Epoxy Resins. I. Preparation, Characterization, and Storage Behavior of Transition Metal-Diamine Complexes, J. Appl. Polym. Sci., 80, 1489-1503, 2001.
  46. Hamerton I., Hay J.N., Herman H., Howlin B.J., Jepson P., and Gillies D.G., The Development of Controllable Complex Curing Agents for Epoxy Resins. II. Examining the Dissociation and Thermal Behavior of Transition Metal-Diamine Complex-Epoxy Blends, J. Appl. Polym. Sci., 84, 2411-2424, 2002.
  47. Roche A.A., Bouchet J., and Bentadjine S., Formation of Epoxy-Diamine/Metal Interphases, Int. J. Adhes. Adhes., 22, 431-441, 2002.
  48. Arimitsu K., Fuse S., Kudo K., and Furutani M., Imidazole Derivatives as Latent Curing Agents for Epoxy Thermosetting Resins, Mater. Lett., 161, 408-410, 2015.
  49. Ham Y.R., Kim S.H., Shin Y.J., Lee D.H., Yang M., Min J.H., and Shin J.S.,  A Comparison of Some Imidazoles in the Curing of Epoxy Resin, J. Indust. Eng. Chem., 16, 556-559, 2010.
  50. Kudo K., Furutani M., and Arimitsu K., Imidazole Derivatives with an Intramolecular Hydrogen Bond as Thermal Latent Curing Agents for Thermosetting Resins, ACS Macro Lett., 4, 1085-1088, 2015.
  51. Kudo K., Fuse S., Furutani M., and Arimitsu K., Imidazole-type Thermal Latent Curing Agents with High Miscibility for One-Component Epoxy Thermosetting Resins, J. Polym. Sci., Part A: Polym. Chem., 54, 2680-2688, 2016.
  52. Abraham J. and Subit J., Method and Apparatus for Ultrasound Transducer Arrays with Accelerated Cure Adhesives, US Pat. 9,758,668, 2017.
  53. Sano K., Takaiwa R., and Hirano N., Epoxy Resin Composition, Prepreg, and Fiber Reinforced Composite Material, US Pat. App. 15/549,527, 2018.
  54. Dowbenko R., Anderson C.C., and Chang W.H., Imidazole Complexes as Hardeners for Epoxy Adhesives, Indust. Eng. Chem. Prod. Res. Develop., 10, 344-351, 1971.
  55. Yin T., Rong M.Z., Zhang M.Q., and Yang G.C., Self-healing Epoxy Composites-preparation and Effect of the Healant Consisting of Microencapsulated Epoxy and Latent Curing Agent, Compos. Sci. Technol., 67, 201-212, 2007.
  56. Yin T., Rong M.Z., and Zhang M.Q., Self-healing of Cracks in Epoxy Composites, Adv. Mater. Res., 47, 282-285, 2008.
  57. Zhang M.Q., Rong M.Z., and Yin T., Self-healing Polymers and Polymer Composites, Self-healing Materials: Fundamentals, Design Strategies, and Applications,John Wiley and Sons, 2011.
  58. Bouillon N., Pascault J.P., and Tighzert L., Epoxy Prepolymers Cured with Boron Trifluoride-Amine Complexes, 2. Polymerization Mechanisms, Die Makromolekulare Chemie: Macromol. Chem. Phys., 191, 1417-1433, 1990.
  59. Bouillon N., Pascault J.P., and Tighzert L., Epoxy Prepolymers Cured with Boron Trifluoride-Amine Complexes, 1. Influence of the Amine on the Curing Window, Die Makromolekulare Chemie: Macromol. Chem. Phys., 191, 1403-1416, 1990.
  60. Bouillon N., Pascault J.-P., and Tighzert L., Epoxy Prepolymers Cured with Boron Trifluoride-Amine Complexes, 3. Polymerization Mechanism of a Prepolymer Containing Epoxy Groups, Die Makromolekulare Chemie: Macromol. Chem. Phys., 191, 1435-1449, 1990.
  61. Chabanne P., Tighzert L., Pascault J.P., and Bonnetot B., Epoxy Polymerization Initiated by BF3-Amine Complexes. I. Synthesis and Characterization of BF3-Amine Complexes and BF3-Amine Complexes Dissolved in γ-Butyrolactone, J. Appl. Polym. Sci., 49, 685-699, 1993.
  62. Smith R.E. and Smith C.H., Epoxy Resin Cure III: Boron Trifluoride Catalysts, J. Appl. Polym. Sci., 31, 929-939, 1986.
  63. Kim M., Sanda F., and Endo T., Phosphonamidodithioate as a Novel Thermally Latent Initiator in the Polymerization of Glycidyl Phenyl Ether, Tetrahedron Lett., 41, 7487-7491, 2000.
  64. Ulrich G., Mathes A., Hansen A., and Herzog R., Epoxy Hardening Agents, US Pat. 5,071,951, 1991.
  65. Komatsu H., Hino T., and Endo T., Novel Thermally Latent Self-Crosslinkable Copolymers Bearing Oxetane and Hemiacetal Ester Moieties: The Synthesis, Self-Crosslinking Behavior, and Thermal Properties, J. Polym. Sci., Part A: Polym. Chem., 43, 4260-4270, 2005.
  66. Yamamoto T. and Ishidoya M., New Thermosetting Coatings Using Blocked Carboxyl Groups, Prog. Org. Coat., 40, 267-273, 2000.
  67. Nakane Y. and Ishidoya M., New Crosslinking System Using Blocked Carboxylic Acid, Prog. Org. Coat., 31, 113-120, 1997.
  68. Komatsu H., Hino T., and Endo T., Thermal Dissociation Behavior of Copolymers Bearing Hemiacetal Ester Moieties and Their Reactions with Epoxides, J. Polym. Sci., Part A: Polym. Chem., 44, 3966-3977, 2006.
  69. Komatsu H., Ochiai B., and Endo T., Thermally Latent Reaction of Hemiacetal Ester with Epoxide Catalyzed by Recyclable Polymeric Catalyst Consisting of Salen-Zinc Complex and Polyurethane Main Chain, J. Polym. Sci., Part A: Polym. Chem., 46, 3673-3681, 2008.
  70. Komatsu H., Ochiai B., Hino T., and Endo T., Model Reaction for Thermally Latent Curing Through Addition of Hemiacetal Ester and Epoxide by Schiff-Base-Zinc Halide Complexes, J. Polym. Sci., Part A: Polym. Chem., 45, 3370-3379, 2007.
  71. Okuhira H., Kii T., Ochi M., and Takeyama H., Novel Moisture-Curable Epoxy Resins and Their Characterization, J. Appl. Polym. Sci., 89, 91-95, 2003.
  72. Holm R.T., Ketimines as Latent Epoxy Curing Agents, J. Paint Technol., 39, 385-388, 1967.
  73. Minnich K.E., Rufo M., and Vedage G.A., Ketimines of Benzylated Polyamines as Curing Agents, US Pat. 9,708,248, 2017.
  74. Wesoły M., Cal K., Ciosek P., and Wróblewski W., Influence of Dissolution-Modifying Excipients in Various Pharmaceutical Formulations on Electronic Tongue Results, Talanta, 162, 203-209, 2017.
  75. Urbas R., Milošević R., Kašiković N., Pavlović Ž., and Elesini U.S., Microcapsules Application in Graphic Arts Industry: A Review on the State-Of-The-Art, Iran. Polym. J., 26, 541-561, 2017.
  76. Silva A.C.M., Moghadam A.D., Singh P., and Rohatgi, P.K., Self-healing Composite Coatings Based on In Situ Micro-Nanoencapsulation Process for Corrosion Protection, J. Coat. Technol. Res., 1-29, 2017.
  77. Li H., Cui Y., Wang H., Zhu Y., and Wang B., Preparation and Application of Polysulfone Microcapsules Containing Tung Oil in Self-healing and Self-lubricating Epoxy Coating, Colloid. Surface. A: Physicochem. Eng. Aspects, 518, 181-187, 2017.
  78. Fan J., Zheng Y., Xie Y., Sun Y., Luan Y., Jiang W., Wang C., Liu S., and Liu X., Effect of Solvent Evaporation Technique on the Characteristics of Curing Agent Microcapsules and the Curing Process, Compos. Sc. Technol., 138, 80-90, 2017.
  79. Jyothi S.S., Seethadevi A., Prabha K.S., Muthuprasanna P., and Pavitra P., Microencapsulation: A Review, Int. J. Pharm. Biol. Sci., 3, 509-531, 2012.
  80. Balassa L.L., Fanger G.O., and Wurzburg O.B., Microencapsulation in the Food Industry, Crit. Rev. Food Sci. Nutr., 2, 245-265, 1971.
  81. Dubey R., Microencapsulation Technology and Applications, Defence Sci. J., 59, 82 2009.
  82. Umer H., Nigam H., Tamboli A.M., and Nainar M.S.M., Microencapsulation: Process, Techniques and Applications, Int. J. Res. Ppharm. Biomed. Sci., 2, 474-481 2011.
  83. Akagawa M., and Yasuhara T., Microencapsulated Curing Agent,  US Pat. 9,725,575, 2017.
  84. Shin M.J., Shin Y.J., and Shin J.S., Latent Imidazole Curing Agents by Microencapsulation with Copolymers, Particulate Sci. Technol., 36, 112-116, 2018.
  85. Cervi G., Pezzin S.H. and Meier M.M., Differential Scanning Calorimetry Study on Curing Kinetics of Diglycidyl Ether of Bisphenol A with Amine Curing Agents for Self-healing systems, Matéria, 22, 2017.
  86. Johns R.M., and Schiffman C.W., Room Temperature Storable Prepregs-An Advancement in Prepreg Resin, Composites for the Real World,International SAMPE Technical Conference, 29, 122-127, 1997.
  87. Shaikh M.Q., Free Volume and Storage Stability of One-component Epoxy Nanocomposites, PhD Thesis, Kiel, 2010.
  88. Zhang L. and Wang X., Curing Behavior for Microencapsulated Curing Agents on Epoxy Resin Systems, 5th International Conference on Civil Engineering and Transportation, 1739-1742, 2015.
  89. Fuensanta M., Grau A., Romero-Sánchez M.D., Guillem C., and López-Buendía Á.M., Effect of the Polymer Shell in Imidazole Microencapsulation by Solvent Evaporation Method, Polym. Bull., 70, 3055-3074, 2013.
  90. Xu H., Fang Z., and Tong L., Effect of Microencapsulated Curing Agents on the Curing Behavior for Diglycidyl Ether Of Bisphenol A Epoxy Resin Systems, J. Appl. Polym. Sci., 107, 1661-1669, 2008.
  91. Ham Y.R., Lee D.H., Kim S.H., Shin Y.J., Yang M., and Shin J.S., Microencapsulation of Imidazole Curing Agent for Epoxy Resin, J. Indust. Eng. Chem., 16, 728-733, 2010.
  92. Lee D.H., Yang M., Kim S.H., Shin M.J., and Shin J.S., Microencapsulation of Imidazole Curing Agents by Spray-Drying Method, J. Appl. Polym. Sci., 122, 782-788, 2011.
  93. Shin M.J., Shin Y.J., Hwang S.W., and Shin J.S., Microencapsulation of Imidazole Curing Agent by Solvent Evaporation Method Using W/O/W Emulsion, J. Appl. Polym. Sci., 129, 1036-1044, 2013.
  94. Masuko D., Komuro K., Ito M., and Kawashima T., Latent Curing Agent for Epoxy Resin and Method for Manufacturing the Same, US Pat. 8,211,330, 2012.
  95. Xing S., Yang J., Huang Y., Zheng Q., and Zeng J., Preparation and Characterization of a Novel Microcapsule-Type Latent Curing Agent for Epoxy Resin, Mater. Design, 85, 661-670, 2015.
  96. Shin Y.J., Kim M., Hwang S. W., Shin M.J., and Shin J.S., One-Component Epoxy Adhesive for Repair of Cell Phone Board, J. Adhes. Sci. Technol., 32, 1278-1286, 2018.
  97. Mozaffari S.M., Beheshty M. H., and Mirabedini S.M., Microencapsulation of 1-Methylimidazole Using Solid Epoxy Resin: Study on Microcapsule Residence Time and Properties of the System, Iran. Polym. J., 25, 385-394, 2016.
  98. Mozaffari S.M., Beheshty M.H., and Mirabedini S.M., Effect of Processing Conditions on the Microencapsulation of 1-Methylimidazole Curing Agent Using Solid Epoxy Resins, Iran. Polym. J., 26, 629-637, 2017.
  99. Mozaffari S.M., Beheshty M.H., and Mirabedini S.M., Dynamic Mechanical Thermal Analysis of Cured Epoxy Resin by Capsulated 1-Methylimidazole Curing Agent for Making Advanced Composites,5th International Conference on Composites: Characterization, Fabrication and Application, University of Science and Technology, Tehran, Iran, 20-21 December, 2016.
  100. Ma A., Zhang Q., Zhang H., Shi Y., and Liu Y., A Novel Single Component Epoxy Resin Adhesive with Microcapsule Latent Curing Agent of 2-Phenylimidazole/Polymethyl Acrylic Glycidyl Ester, J. Elast. Plast., 47, 439-448, 2015.
  101. Ma A.J., Zhang Q.Y., and Shi Y.Q., Study on the Preparation of 2-Phenyl Imidazole Microcapsule and Its Effect on Curing Epoxy Resin, Adv. Mater. Res., 690, 1649-1652, 2013.
  102. Li C., Tan J., Gu J., Xue Y., Qiao L., and Zhang Q., Facile synthesis of Imidazole Microcapsules via Thiol-Click Chemistry and Their Application as Thermally Latent Curing Agent for Epoxy Resins, Compos. Sci. Technol., 142, 198-206, 2017.
  103. Cao M., Xie P., Jin Z., Zhang Y., Zhang R., Chung T.S., and He C.,  Novel Microencapsulated Curing Accelerator for Prolonging Shelf Life of Epoxy Resin Composition, J. Appl. Polym. Sci., 85, 873-878, 2002.
  104. Shin M.J., Kim J.G., and Shin J.S., Microencapsulation of Imidazole Curing Agents by Spray-Drying Method Using W/O Emulsion, J. Appl. Polym. Sci., 126,108-115, 2012.
  105. LaLiberte B.R., and Bornstein J., Mechanism of Monuron-Accelerated Dicyandiamide Cure of Epoxy Resins, PN, 1981.
  106. Decker C., UV-Radiation Curing Chemistry, Pigm. Resin Technol., 30, 278-286, 2001.
  107. Sangermano M., Razza N., and Crivello J.V., Cationic UV-curing: Technology and Applications, Macromol. Mater. Eng., 299, 775-793, 2014.
  108. Dixon G.D., Carlson N.W., and Saunders H.E., Solventless UV Dryable B-Stageable Epoxy Adhesive, US Pat. 4,412,048, 1983.
  109. Hayase S., Suzuki S., and Wada M., Photo-Curable Epoxy Resin Type Composition, US Pat. 4,975,471, 1990.
  110. Biernath R.W., and Soane D.S., Cure Kinetics of Epoxy Cresol Novolac Encapsulant for Microelectronics Packaging,Advances in New Materials, Springer, Boston, 103-159, 1992.
  111. Morsch S., Lyon S., Greensmith P., Smith S.D., and Gibbon, S.R., Water Transport in an Epoxy-Phenolic Coating, Prog. Org. Coati., 78, 293-299, 2015.
  112. Granado L., Kempa S., Bremmert S., Gregoriades L.J., Brüning F., Anglaret E., and Fréty N., Isothermal DSC Study of the Curing Kinetics of an Epoxy/Silica Composite for Microelectronics, J.  Microelectron. Electron. Packag., 14, 45-50, 2017.
  113. Bertram J.L., Walker L.L., and Muskopf J.W., Latent Catalysts for Epoxy-Phenolic Reactions, US Pat. 5,134,239, 1992.
  114. Tyberg C.S., Shih P., Verghese K.N., Loos A.C., Lesko J.J., and Riffle J.S., Latent Nucleophilic Initiators for Melt Processing Phenolic-Epoxy Matrix Composites, Polymer, 41, 9033-9048, 2000.             

 

Komatsu H., Ochiai B., Hino T., and Endo T., Thermally Latent Reaction of Hemiacetal Ester with Epoxide Controlled by Schiff-base-Zinc Chloride Complexes with Tunable Catalytic Activity, J. Molecul. Catal. A: Chem., 273, 289-297, 2007.
Koczak M.J., Khatri S.C., Allison J.E., and Bader M.G., Metal-Matrix Composites for Ground Vehicle, Aerospace, and Industrial Applications, 1st ed. Butterworth-Heinemann, 16, 297-326, 1993.
Nazarpour-Fard H., Rad-Moghadam K., Shirini F., Beheshty M.H., and Asghari G.H., Reinforcement of Epoxy Resin/Carbon Fiber Composites by Carboxylated Carbon Nanotubes: a Dynamic Mechanical Study, Polimery, 63, 253-263, 2018.
Yarovsky I. and Evans E., Computer Simulation of Structure and Properties of Crosslinked Polymers: Application to Epoxy Resins, Polymer, 43, 963-969, 2002.
Jin F.L., Li X., and Park S. J., Synthesis and Application of Epoxy Resins: A Review, J. Indust. Eng. Chem., 29, 1-11, 2015.
Vafayan M., Ghoreishy M.H.R., Abedini H., and Beheshty M.H., Development of an Optimized Thermal Cure Cycle for a Complex-Shape Composite Part Using a Coupled Finite Element/Genetic Algorithm Technique, Iran. Polym. J., 24, 459-469, 2015.
Eldin S.H., Maurer J., Peyer R.P., Grieshaber P., and Rime F., Epoxy Resin with Anhydride, Toughener and Active Hydrogen-Containing Compound, US Pat., 5,789,482, 1998.
Wegmann A., Chemical Resistance of Waterborne Epoxy/Amine Coatings, Prog. Org. Coat., 32, 231-239, 1997.
Srividhya M., Lakshmi M.S., and Reddy B.S.R., Chemistry of Siloxane Amide as a New Curing Agent for Epoxy Resins: Material Characterization and Properties, Macromol. Chem. Phys., 206, 2501-2511, 2005.
Rubinsztajn M.I. and Rubinsztajn S., Composition Comprising Silicone Epoxy Resin, Hydroxyl Compound, Anhydride and Curing Catalyst, US Pat. 6,632,892, 2003.
Ma S., Liu X., Jiang Y., Tang Z., Zhang C., and Zhu J., Bio-based Epoxy Resin from Itaconic Acid and Its Thermosets Cured with Anhydride and Comonomers, Green Chem., 15, 245-254, 2013.
Pham H.Q. and Marks M.J., Epoxy Resins, Ullmann’s Encyclopedia of Industrial Chemistry, 2000.
Kugler S., Kowalczyk K., and Spychaj T., Influence of Synthetic and Bio-based Amine Curing Agents on Properties of Solventless Epoxy Varnishes and Coatings with Carbon Nanofillers, Prog. Org. Coat., 109, 83-91, 2017.
Shiobara T., Sawada J., Wakao M., Kashiwagi T., Miyagawa N., Kawada Y., Sasaki C., and Taniguchi N., Silicone-modified Epoxy Resin, Composition Containing the Epoxy Resin, and Cured Product of Same, US Pat. 9,963,542, 2018.
Zafar S., Riaz U., and Ahmad S., Water-Borne Melamine-Formaldehyde-Cured Epoxy-Acrylate Corrosion Resistant Coatings, J. Appl. Polym. Sci., 107, 215-222, 2008.
Meyer K.J., Hunter G.A., Potts D.L., and Ritter W.L., A Curable Epoxy Resin Composition and a Curative Therefore, US Pat. App. 15/505,629, 2017.
Khalina M., Beheshty M.H., and Salimi A., Preparation and Characterization of DGEBA/EPN Epoxy Blends with Improved Fracture Toughness, Chinese J. Polym. Sci., 36, 632-640, 2018.
Watts J.F., Abel M.L., Perruchot C., Lowe C., Maxted J.T., and White R.G., Segregation and Crosslinking in Urea Formaldehyde/Epoxy Resins: A Study by High-Resolution XPS, J. Electron. Spectrosc. Relat. Phenomena, 121, 233-247, 2001.
Walker J., One Part Epoxy-Based Composition, US Pat. App. 15/547,983, 2018.
Perez M.A. and Higgins J.M., High Temperature Stable, One-Part, Curable Thermoset Compositions, US Pat. App. 15/573,710, 2018.
Chernack M., Pressure Sensitive Adhesive Composition, US Pat. 4,940,852, 1990.
Endruweit A., Johnson M.S., and Long A.C., Curing of Composite Components by Ultraviolet Radiation: A Review, Polym. Compos., 27, 119-128, 2006.
Kreibich U.T. and Schmid R., Inhomogeneities in Epoxy Resin Networks, J. Polym. Sci.: Polym. Symposia, 53, 177-185, 1975.
Güthner T. and Hammer B., Curing of Epoxy Resins with Dicyandiamide and Urones, J. Appl. Polym. Sci., 50, 1453-1459, 1993.
Wu F., Zhou X., and Yu X., Reaction Mechanism, Cure Behavior and Properties of a Multifunctional Epoxy Resin, TGDDM, with Latent Curing Agent Dicyandiamide, RSC Adv., 8, 8248-8258, 2018.
Hagnauer G.L. and Dunn D.A., Dicyandiamide Analysis and Solubility in Epoxy Resins, J. Appl. Polym. Sci., 26, 1837-1846, 1981.
Hayaty M., Beheshty M.H., and Esfandeh M., Cure Kinetics of a Glass/Epoxy Prepreg by Dynamic Differential Scanning Calorimetry, J. Appl. Polym. Sci., 120, 62-69, 2011.
Hayaty M., Beheshty M.H., and Esfandeh M., A New Approach for Determination of Gel Time of a Glass/Epoxy Prepreg, J. Appl. Polym. Sci., 120, 1483-1489, 2011.
Hayaty M., Beheshty M.H., and Esfandeh M., Isothermal Differential Scanning Calorimetry Study of a Glass/Epoxy Prepreg, Polym. Adv. Technol., 22, 1001-1006, 2011.
Hayaty M., Honarkar H., and Beheshty M.H., Curing Behavior of Dicyandiamide/Epoxy Resin System Using Different Accelerators, Iran. Polym. J., 22, 591-598, 2013.
Saunders T.F., Levy M.F., and Serino J.F., Mechanism of the Tertiary Amine-Catalyzed Dicyandiamide Cure of Epoxy Resins, J. Polym. Sci. Part A-1: Polym. Chem., 5, 1609-1617, 1967.
Hesabi M., Salimi A., and Beheshty M.H., Effect of Tertiary Amine Accelerators with Different Substituents on Curing Kinetics and Reactivity of Epoxy/Dicyandiamide System, Polym. Test., 59, 344-354, 2017.
Yamada T., Okumoto T., Ohtani H., and Tsuge S., Characterization of Epoxy Resins Cured with Dicyandiamide in the Presence of Imidazole Catalysts by High-Resolution Pyrolysis Gas Chromatography, J. Analy. Appl. Pyrol., 33, 157-166, 1995.
Son P.-N. and Weber C.D., Some Aspects of Monuron-Accelerated Dicyandiamide Cure of Epoxy Resins, J. Appl. Polym. Sci., 17, 1305-1313, 1973.
Galledari N.A., Beheshty M.H., and Barmar M., Effect of NBR on Epoxy/Glass Prepregs Properties, J. Appl. Polym. Sci., 123, 1597-1603, 2012.
Jamshidi H., Akbari R., and Beheshty M.H., Toughening of dicyandiamide-cured DGEBA-Based Epoxy Resins Using Flexible Diamine, Iran. Polym. J., 24, 399-410, 2015.
Razavi S.M.J., Neisiany R.E., Khorasani S.N., Ramakrishna S., and Berto F., Effect of Neat and Reinforced Polyacrylonitrile Nanofibers Incorporation on Interlaminar Fracture Toughness of Carbon/Epoxy Composite, Theor. Appl. Mech. Lett., 8, 126-131, 2018.
Mahnam N., Beheshty M.H., Barmar M., and Shervin M., Modification of Dicyandiamide-Cured Epoxy Resin with Different Molecular Weights of Polyethylene Glycol and Its Effect on Epoxy/Glass Prepreg Characteristics, High Perform. Polym., 25, 705-713, 2013.
Saha  A., Kumar R., Kumar R., and Devakumar C., Development
and Assessment of Green Synthesis of Hydrazides, Indian J. Chem. Section B, 49, 526-531, 2010.
Tomuta A.M., Ramis X., Ferrando F., and Serra A., The Use of Dihydrazides as Latent Curing Agents in Diglycidyl Ether of Bisphenol A Coatings, Prog. Org. Coat., 74, 59-66, 2012.
Zhang B.L., Zhang H.Q., You Y.C., Du Z.J., Ding P.Y., and Wang T.,  Application of a Series of Novel Chain-Extended Ureas as Latent-Curing Agents and Toughening Modifiers for Epoxy Resin, J. Appl. Polym. Sci., 69, 339-347, 1998.
Chiu Y.S., Liu Y.L., Wei W.L., and Chen W.Y., Using Diethylphosphites as Thermally Latent Curing Agents for Epoxy Compounds, J. Polym. Sci. Part A: Polym. Chem., 41, 432–440, 2003.
Ryu J.H., Choi K.S., and Kim W.G., Latent Catalyst Effects in Halogen-Free Epoxy Molding Compounds for Semiconductor Encapsulation, J. Appl. Polym. Sci., 96, 2287-2299, 2005.
Kim W.G., Yoon H.G., and Lee J.Y., Cure Kinetics of Biphenyl Epoxy Resin System Using Latent Catalysts, J. Appl. Polym. Sci., 81, 2711-2720, 2001.
Hamerton I., Hay J.N., Howlin B.J., Jepson P., and Mortimer S., The Development of Controllable Complex Curing Agents for Epoxy Resins. I. Preparation, Characterization, and Storage Behavior of Transition Metal-Diamine Complexes, J. Appl. Polym. Sci., 80, 1489-1503, 2001.
Hamerton I., Hay J.N., Herman H., Howlin B.J., Jepson P., and Gillies D.G., The Development of Controllable Complex Curing Agents for Epoxy Resins. II. Examining the Dissociation and Thermal Behavior of Transition Metal-Diamine Complex-Epoxy Blends, J. Appl. Polym. Sci., 84, 2411-2424, 2002.
Roche A.A., Bouchet J., and Bentadjine S., Formation of Epoxy-Diamine/Metal Interphases, Int. J. Adhes. Adhes., 22, 431-441, 2002.
Arimitsu K., Fuse S., Kudo K., and Furutani M., Imidazole Derivatives as Latent Curing Agents for Epoxy Thermosetting Resins, Mater. Lett., 161, 408-410, 2015.
Ham Y.R., Kim S.H., Shin Y.J., Lee D.H., Yang M., Min J.H., and Shin J.S.,  A Comparison of Some Imidazoles in the Curing of Epoxy Resin, J. Indust. Eng. Chem., 16, 556-559, 2010.
Kudo K., Furutani M., and Arimitsu K., Imidazole Derivatives with an Intramolecular Hydrogen Bond as Thermal Latent Curing Agents for Thermosetting Resins, ACS Macro Lett., 4, 1085-1088, 2015.
Kudo K., Fuse S., Furutani M., and Arimitsu K., Imidazole-type Thermal Latent Curing Agents with High Miscibility for One-Component Epoxy Thermosetting Resins, J. Polym. Sci., Part A: Polym. Chem., 54, 2680-2688, 2016.
Abraham J. and Subit J., Method and Apparatus for Ultrasound Transducer Arrays with Accelerated Cure Adhesives, US Pat. 9,758,668, 2017.
Sano K., Takaiwa R., and Hirano N., Epoxy Resin Composition, Prepreg, and Fiber Reinforced Composite Material, US Pat. App. 15/549,527, 2018.
Dowbenko R., Anderson C.C., and Chang W.H., Imidazole Complexes as Hardeners for Epoxy Adhesives, Indust. Eng. Chem. Prod. Res. Develop., 10, 344-351, 1971.
Yin T., Rong M.Z., Zhang M.Q., and Yang G.C., Self-healing Epoxy Composites-preparation and Effect of the Healant Consisting of Microencapsulated Epoxy and Latent Curing Agent, Compos. Sci. Technol., 67, 201-212, 2007.
Yin T., Rong M.Z., and Zhang M.Q., Self-healing of Cracks in Epoxy Composites, Adv. Mater. Res., 47, 282-285, 2008.
Zhang M.Q., Rong M.Z., and Yin T., Self-healing Polymers and Polymer Composites, Self-healing Materials: Fundamentals, Design Strategies, and Applications, John Wiley and Sons, 2011.
Bouillon N., Pascault J.P., and Tighzert L., Epoxy Prepolymers Cured with Boron Trifluoride-Amine Complexes, 2. Polymerization Mechanisms, Die Makromolekulare Chemie: Macromol. Chem. Phys., 191, 1417-1433, 1990.
Bouillon N., Pascault J.P., and Tighzert L., Epoxy Prepolymers Cured with Boron Trifluoride-Amine Complexes, 1. Influence of the Amine on the Curing Window, Die Makromolekulare Chemie: Macromol. Chem. Phys., 191, 1403-1416, 1990.
Bouillon N., Pascault J.-P., and Tighzert L., Epoxy Prepolymers Cured with Boron Trifluoride-Amine Complexes, 3. Polymerization Mechanism of a Prepolymer Containing Epoxy Groups, Die Makromolekulare Chemie: Macromol. Chem. Phys., 191, 1435-1449, 1990.
Chabanne P., Tighzert L., Pascault J.P., and Bonnetot B., Epoxy Polymerization Initiated by BF3-Amine Complexes. I. Synthesis and Characterization of BF3-Amine Complexes and BF3-Amine Complexes Dissolved in γ-Butyrolactone, J. Appl. Polym. Sci., 49, 685-699, 1993.
Smith R.E. and Smith C.H., Epoxy Resin Cure III: Boron Trifluoride Catalysts, J. Appl. Polym. Sci., 31, 929-939, 1986.
Kim M., Sanda F., and Endo T., Phosphonamidodithioate as a Novel Thermally Latent Initiator in the Polymerization of Glycidyl Phenyl Ether, Tetrahedron Lett., 41, 7487-7491, 2000.
Ulrich G., Mathes A., Hansen A., and Herzog R., Epoxy Hardening Agents, US Pat. 5,071,951, 1991.
Komatsu H., Hino T., and Endo T., Novel Thermally Latent Self-Crosslinkable Copolymers Bearing Oxetane and Hemiacetal Ester Moieties: The Synthesis, Self-Crosslinking Behavior, and Thermal Properties, J. Polym. Sci., Part A: Polym. Chem., 43, 4260-4270, 2005.
Yamamoto T. and Ishidoya M., New Thermosetting Coatings Using Blocked Carboxyl Groups, Prog. Org. Coat., 40, 267-273, 2000.
Nakane Y. and Ishidoya M., New Crosslinking System Using Blocked Carboxylic Acid, Prog. Org. Coat., 31, 113-120, 1997.
Komatsu H., Hino T., and Endo T., Thermal Dissociation Behavior of Copolymers Bearing Hemiacetal Ester Moieties and Their Reactions with Epoxides, J. Polym. Sci., Part A: Polym. Chem., 44, 3966-3977, 2006.
Komatsu H., Ochiai B., and Endo T., Thermally Latent Reaction of Hemiacetal Ester with Epoxide Catalyzed by Recyclable Polymeric Catalyst Consisting of Salen-Zinc Complex and Polyurethane Main Chain, J. Polym. Sci., Part A: Polym. Chem., 46, 3673-3681, 2008.
Komatsu H., Ochiai B., Hino T., and Endo T., Model Reaction for Thermally Latent Curing Through Addition of Hemiacetal Ester and Epoxide by Schiff-Base-Zinc Halide Complexes, J. Polym. Sci., Part A: Polym. Chem., 45, 3370-3379, 2007.
Okuhira H., Kii T., Ochi M., and Takeyama H., Novel Moisture-Curable Epoxy Resins and Their Characterization, J. Appl. Polym. Sci., 89, 91-95, 2003.
Holm R.T., Ketimines as Latent Epoxy Curing Agents, J. Paint Technol., 39, 385-388, 1967.
Minnich K.E., Rufo M., and Vedage G.A., Ketimines of Benzylated Polyamines as Curing Agents, US Pat. 9,708,248, 2017.
Wesoły M., Cal K., Ciosek P., and Wróblewski W., Influence of Dissolution-Modifying Excipients in Various Pharmaceutical Formulations on Electronic Tongue Results, Talanta, 162, 203-209, 2017.
Urbas R., Milošević R., Kašiković N., Pavlović Ž., and Elesini U.S., Microcapsules Application in Graphic Arts Industry: A Review on the State-Of-The-Art, Iran. Polym. J., 26, 541-561, 2017.
Silva A.C.M., Moghadam A.D., Singh P., and Rohatgi, P.K., Self-healing Composite Coatings Based on In Situ Micro-Nanoencapsulation Process for Corrosion Protection, J. Coat. Technol. Res., 1-29, 2017.
Li H., Cui Y., Wang H., Zhu Y., and Wang B., Preparation and Application of Polysulfone Microcapsules Containing Tung Oil in Self-healing and Self-lubricating Epoxy Coating, Colloid. Surface. A: Physicochem. Eng. Aspects, 518, 181-187, 2017.
Fan J., Zheng Y., Xie Y., Sun Y., Luan Y., Jiang W., Wang C., Liu S., and Liu X., Effect of Solvent Evaporation Technique on the Characteristics of Curing Agent Microcapsules and the Curing Process, Compos. Sc. Technol., 138, 80-90, 2017.
Jyothi S.S., Seethadevi A., Prabha K.S., Muthuprasanna P., and Pavitra P., Microencapsulation: A Review, Int. J. Pharm. Biol. Sci., 3, 509-531, 2012.
Balassa L.L., Fanger G.O., and Wurzburg O.B., Microencapsulation in the Food Industry, Crit. Rev. Food Sci. Nutr., 2, 245-265, 1971.
Dubey R., Microencapsulation Technology and Applications, Defence Sci. J., 59, 82 2009.
Umer H., Nigam H., Tamboli A.M., and Nainar M.S.M., Microencapsulation: Process, Techniques and Applications, Int. J. Res. Ppharm. Biomed. Sci., 2, 474-481 2011.
Akagawa M., and Yasuhara T., Microencapsulated Curing Agent,  US Pat. 9,725,575, 2017.
Shin M.J., Shin Y.J., and Shin J.S., Latent Imidazole Curing Agents by Microencapsulation with Copolymers, Particulate Sci. Technol., 36, 112-116, 2018.
Cervi G., Pezzin S.H. and Meier M.M., Differential Scanning Calorimetry Study on Curing Kinetics of Diglycidyl Ether of Bisphenol A with Amine Curing Agents for Self-healing systems, Matéria, 22, 2017.
Johns R.M., and Schiffman C.W., Room Temperature Storable Prepregs-An Advancement in Prepreg Resin, Composites for the Real World, International SAMPE Technical Conference, 29, 122-127, 1997.
Shaikh M.Q., Free Volume and Storage Stability of One-component Epoxy Nanocomposites, PhD Thesis, Kiel, 2010.
Zhang L. and Wang X., Curing Behavior for Microencapsulated Curing Agents on Epoxy Resin Systems, 5th International Conference on Civil Engineering and Transportation, 1739-1742, 2015.
Fuensanta M., Grau A., Romero-Sánchez M.D., Guillem C., and López-Buendía Á.M., Effect of the Polymer Shell in Imidazole Microencapsulation by Solvent Evaporation Method, Polym. Bull., 70, 3055-3074, 2013.
Xu H., Fang Z., and Tong L., Effect of Microencapsulated Curing Agents on the Curing Behavior for Diglycidyl Ether Of Bisphenol A Epoxy Resin Systems, J. Appl. Polym. Sci., 107, 1661-1669, 2008.
Ham Y.R., Lee D.H., Kim S.H., Shin Y.J., Yang M., and Shin J.S., Microencapsulation of Imidazole Curing Agent for Epoxy Resin, J. Indust. Eng. Chem., 16, 728-733, 2010.
Lee D.H., Yang M., Kim S.H., Shin M.J., and Shin J.S., Microencapsulation of Imidazole Curing Agents by Spray-Drying Method, J. Appl. Polym. Sci., 122, 782-788, 2011.
Shin M.J., Shin Y.J., Hwang S.W., and Shin J.S., Microencapsulation of Imidazole Curing Agent by Solvent Evaporation Method Using W/O/W Emulsion, J. Appl. Polym. Sci., 129, 1036-1044, 2013.
Masuko D., Komuro K., Ito M., and Kawashima T., Latent Curing Agent for Epoxy Resin and Method for Manufacturing the Same, US Pat. 8,211,330, 2012.
Xing S., Yang J., Huang Y., Zheng Q., and Zeng J., Preparation and Characterization of a Novel Microcapsule-Type Latent Curing Agent for Epoxy Resin, Mater. Design, 85, 661-670, 2015.
Shin Y.J., Kim M., Hwang S. W., Shin M.J., and Shin J.S., One-Component Epoxy Adhesive for Repair of Cell Phone Board, J. Adhes. Sci. Technol., 32, 1278-1286, 2018.
Mozaffari S.M., Beheshty M. H., and Mirabedini S.M., Microencapsulation of 1-Methylimidazole Using Solid Epoxy Resin: Study on Microcapsule Residence Time and Properties of the System, Iran. Polym. J., 25, 385-394, 2016.
Mozaffari S.M., Beheshty M.H., and Mirabedini S.M., Effect of Processing Conditions on the Microencapsulation of 1-Methylimidazole Curing Agent Using Solid Epoxy Resins, Iran. Polym. J., 26, 629-637, 2017.
Mozaffari S.M., Beheshty M.H., and Mirabedini S.M., Dynamic Mechanical Thermal Analysis of Cured Epoxy Resin by Capsulated 1-Methylimidazole Curing Agent for Making Advanced Composites, 5th International Conference on Composites: Characterization, Fabrication and Application, University of Science and Technology, Tehran, Iran, 20-21 December, 2016.
Ma A., Zhang Q., Zhang H., Shi Y., and Liu Y., A Novel Single Component Epoxy Resin Adhesive with Microcapsule Latent Curing Agent of 2-Phenylimidazole/Polymethyl Acrylic Glycidyl Ester, J. Elast. Plast., 47, 439-448, 2015.
Ma A.J., Zhang Q.Y., and Shi Y.Q., Study on the Preparation of 2-Phenyl Imidazole Microcapsule and Its Effect on Curing Epoxy Resin, Adv. Mater. Res., 690, 1649-1652, 2013.
Li C., Tan J., Gu J., Xue Y., Qiao L., and Zhang Q., Facile synthesis of Imidazole Microcapsules via Thiol-Click Chemistry and Their Application as Thermally Latent Curing Agent for Epoxy Resins, Compos. Sci. Technol., 142, 198-206, 2017.
Cao M., Xie P., Jin Z., Zhang Y., Zhang R., Chung T.S., and He C.,  Novel Microencapsulated Curing Accelerator for Prolonging Shelf Life of Epoxy Resin Composition, J. Appl. Polym. Sci., 85, 873-878, 2002.
Shin M.J., Kim J.G., and Shin J.S., Microencapsulation of Imidazole Curing Agents by Spray-Drying Method Using W/O Emulsion, J. Appl. Polym. Sci., 126, 108-115, 2012.
LaLiberte B.R., and Bornstein J., Mechanism of Monuron-Accelerated Dicyandiamide Cure of Epoxy Resins, PN, 1981.
Decker C., UV-Radiation Curing Chemistry, Pigm. Resin Technol., 30, 278-286, 2001.
Sangermano M., Razza N., and Crivello J.V., Cationic UV-curing: Technology and Applications, Macromol. Mater. Eng., 299, 775-793, 2014.
Dixon G.D., Carlson N.W., and Saunders H.E., Solventless UV Dryable B-Stageable Epoxy Adhesive, US Pat. 4,412,048, 1983.
Hayase S., Suzuki S., and Wada M., Photo-Curable Epoxy Resin Type Composition, US Pat. 4,975,471, 1990.
Biernath R.W., and Soane D.S., Cure Kinetics of Epoxy Cresol Novolac Encapsulant for Microelectronics Packaging, Advances in New Materials, Springer, Boston, 103-159, 1992.
Morsch S., Lyon S., Greensmith P., Smith S.D., and Gibbon, S.R., Water Transport in an Epoxy-Phenolic Coating, Prog. Org. Coati., 78, 293-299, 2015.
Granado L., Kempa S., Bremmert S., Gregoriades L.J., Brüning F., Anglaret E., and Fréty N., Isothermal DSC Study of the Curing Kinetics of an Epoxy/Silica Composite for Microelectronics, J.  Microelectron. Electron. Packag., 14, 45-50, 2017.
Bertram J.L., Walker L.L., and Muskopf J.W., Latent Catalysts for Epoxy-Phenolic Reactions, US Pat. 5,134,239, 1992.
Tyberg C.S., Shih P., Verghese K.N., Loos A.C., Lesko J.J., and Riffle J.S., Latent Nucleophilic Initiators for Melt Processing Phenolic-Epoxy Matrix Composites, Polymer, 41, 9033-9048, 2000.