اثر نانو‌لوله‌های کربن چنددیواره بر خواص کششی و کیفیت چاپ نانوکامپوزیت‌های آکریلونیتریل-بوتادی‌ان-استیرن چاپ‌شده سه‌بعدی

نوع مقاله: پژوهشی

نویسندگان

1 تهران، پژوهشگاه پلیمر و پتروشیمی ایران، آزمایشگاه ساخت برهم‌افزا، صندوق پستی 112-14975

2 تهران، دانشگاه صنعتی امیرکبیر، دانشکده مهندسی پلیمر، صندوق پستی 4413-15875

10.22063/jipst.2020.1705

چکیده

فرضیه: به‌دلیل ماهیت مدل‌سازی لایه‌نشانی همجوش (FDM) که در آن قطعه‌ها به‌شکل لایه‌لایه ساخته می‌شوند، محصولات حین فرایند چاپ مستعد نقص‌های بسیاری هستند. بنابراین، برای به‌حداقل‌رساندن نقص‌ها و سایر کاستی‌ها به راه‌حل‌های کارآمدی نیاز است. افزایش خواص فیزیکی و مکانیکی قطعه‌های ساخته‌شده با استفاده از نانوذرات یکی از این روش‌هاست.
روش‌ها: به‌منظور بهبود خواص مکانیکی آکریلونیتریل-بوتادی‌ان-استیرن (ABS) که یکی از مرسوم‌ترین مواد به‌کار گرفته‌شده در روش FDM است، مقدارهای مختلف (1، 3 و %5 وزنی) نانولوله‌های کربن چنددیواره (MWCNTs) با روش اختلاط مذاب به ماترس پلیمر افزوده شد. سپس، رشته‌های دارای مقادیر مختلف MWCNTs لازم برای ساخت نمونه‌ها، با روش اکستروژن تهیه شدند. پس از آن، نمونه‌ها با سه ضخامت لایه مختلف 05/0، 1/0 و mm 2/0 و دو زاویه رشته‌نشانی 90/0 و °45-/45+ چاپ شدند. آزمون‌های مختلف کشش، رئولوژی، میکروسکوپی الکترونی پویشی (SEM) و عبوری (TEM) برای بررسی‌ نمونه‌های نانوکامپوزیتی انجام شد.
یافته‌ها: مطالعات SEM و TEM نشان داد، نانوذرات به‌شکل مناسبی درون ماتریس پراکنده شدند. نتایج آزمون کشش نشان داد، استحکام کششی و مدول یانگ در اثر افزودن MWCNTs به‌ترتیب تا 21 و %103 در مقایسه با ماده اولیه افزایش یافته است. همچنین مشخص شد، در ضخامت لایه ثابت، بیشینه استحکام کششی برای نانوکامپوزیت دارای %3 وزنی MWCNTs به‌دست آمد، اما با افزایش مقدار نانوذرات، مدول به‌تدریج افزایش یافت. افزون بر این، تغییر در زاویه رشته‌نشانی اثر معنی‌داری بر خواص کششی نشان نداد و نیز افزایش ضخامت لایه اثر منفی بر خواص تمام مواد بررسی‌شده داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Influence of Multi-Walled Carbon Nanotubes on Tensile Properties and Printing Quality of 3D-Printed Acrylonitrile-Butadiene-Styrene Nanocomposites

نویسندگان [English]

  • Zahra Soheilpour 1
  • Amir Masood Rezadoust 1
  • Mohammad Razavi-Nouri 1
  • Keyvan Garoosi 2
  • Seyed Reza Ghaffarian 2
1 Additive Manufacturing Laboratory, Iran Polymer and Petrochemical Institute, P.O. Box 14975-112, Tehran, Iran
2 Polymer Engineering Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
چکیده [English]

Hypothesis: Due to the nature of a fused deposition modeling (FDM), by which the parts are fabricated layer by layer, many defects are  prone to occur  during printing of the products. Therefore, a few efficient solutions are required to minimize the defects and other shortcomings. The increase in the physical and mechanical properties of the fabricated parts using nanoparticles seems to be one of the methods.
Methods: To improve the mechanical properties of acrylonitrile-butadiene-styrene (ABS), which is one of the most common materials employed in FDM technique, various amounts (1, 3 and 5 wt%) of multi-walled carbon nanotubes (MWCNTs) were added to the matrix through a melt mixing process. The filaments containing different MWCNTs contents, required for fabricating of the samples, were then prepared by extrusion. Next, the samples were printed with the layer thicknesses of 0.05, 0.1 and 0.2 mm and raster angles of +45/-45° and 0/90°. Several experiments such as the tensile and rheological tests as well as scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations were carried out to examine the nanocomposite samples.
Finding: The SEM and TEM studies revealed that the nanoparticles were reasonably well dispersed throughout the matrix. The results of the tensile tests indicated that by addition of MWCNTs, the tensile strength and Young's modulus were increased by 21% and 103%, respectively, in comparison to those of the pristine material. It was also found that at a constant layer thickness, the maximum value of the tensile strength was obtained for the nanocomposite containing 3 wt% MWCNTs, however, the modulus progressively increased with the increase of the nanoparticles content. In addition, the change in raster angle showed no significant effect on the tensile properties, and the increasing of the layer thickness had an adverse effect on the properties for all the materials examined.

کلیدواژه‌ها [English]

  • 3D printing
  • fused deposition modeling
  • nanocomposites
  • acrylonitrile-butadiene-styrene
  • mechanical properties
  1. Attaran M., The Rise of 3-D Printing: The Advantages of Additive Manufacturing Over Traditional Manufacturing, Bus. Horizons, 60, 677-688, 2017.
  2. Panda S.K., Padhee S., Sood A.K., and Mahapatra S.S., Optimization of Fused Deposition Modelling (FDM) Process Parameters Using Bacterial Foraging Technique, Intell. Inf. Manag., 1, 89-97, 2009.
  3. Mohamed O.A., Masood S.H., and Bhowmik J.L., Optimization of Fused Deposition Modeling Process Parameters: A Review of Current Research and Future Prospects, Adv. Manuf., 3, 42-53, 2015.
  4. Zhang M., Song X., Grove W., Hull E., Pei Z.J., and Cong W., Carbon Nanotube Reinforced Fused Deposition Modeling Using Microwave Irradiation, Proceedings of the ASME 2016 International Manufacturing Science and Engineering Conference, Blacksburg, Virginia, June 27-July 1, 1-7, 2016.
  5. Tian X., Liu T., Yang C., Wang Q., and Li D., Interface and Performance of 3D Printed Continuous Carbon Fiber Reinforced PLA Composites, Compos. Part A-Appl. Sci. Manuf., 88, 198-205, 2016.
  6. Bartolomé E., Bozzo B., Sevilla P., Martínez-Pasarell O., Puig T., and Granados X., ABS 3D Printed Solutions for Cryogenic Applications, Cryogenics, 82, 30-37, 2017.
  7. Alafaghani A., Qattawi A., and Ablat M.A., Design Consideration for Additive Manufacturing: Fused Deposition Modelling, Open J. Appl. Sci., 7, 291-318, 2017.
  8. Patanwala H.S., Hong D., Vora S.R., Bognet B., and Ma A.W.K., The Microstructure and Mechanical Properties of 3D Printed Carbon Nanotube-Polylactic Acid Composites, Polym. Compos., 39, 1060-1071, 2018.
  9. Dul S., Fambri L., and Pegoretti A., Fused Deposition Modelling with ABS-Graphene Nanocomposites, Compos. Part A-Appl. Sci. Manuaf., 85, 181-191, 2016.
  10. Dorigato A., Moretti V., Dul S., Unterberger S.H., and Pegoretti A., Electrically Conductive Nanocomposites for Fused Deposition Modelling, Synth. Met., 226, 7-14, 2017.
  11. Christ J.F., Aliheidari N., Ameli A., and Pötschke P., 3D Printed Highly Elastic Strain Sensors of Multiwalled Carbon Nanotube/Thermoplastic Polyurethane Nanocomposites, Mater. Design, 131, 394-401, 2017.
  12. Cholleti E.R. and Gibson I., ABS Nanocomposite Materials in Additive Manufacturing, IOP Conf. Ser.: Mater. Sci. Eng., 455, 012038, 2018.
  13. Sezer H.K. and Eren O., FDM 3D Printing of MWCNT Re-inforced ABS Nano-composite Parts with Enhanced Mechanical and Electrical Properties, J. Manuf. Process., 37, 339-347, 2019.
  14. Zhu J. and Wang B., Effects of Multi-Walled Carbon Nanotubes on the Properties of Acrylonitrile Butadiene Styrene Nanocomposites Potentially Used for Fused Deposition Modeling, Mater. Sci. Forum, 898, 2384-2391, 2017.
  15. Forster A.M., Materials Testing Standards for Additive Manufacturing of Polymer Materials: State of the Art and Standards Applicability, National Institute of Standards and Technology, Gaithersburg, USA, 2015.
  16. Gnanasekaran K., Heijmans T., van Bennekom S., Woldhuis H., Wijnia S., de With G., and Friedrich H., 3D Printing of CNT- and Graphene-Based Conductive Polymer Nanocomposites by Fused Deposition Modeling, Appl. Mater. Today, 9, 21-28, 2017.
  17. Dizon J.R.C., Espera Jr. A.H., Chen Q., and Advincula R.C., Mechanical Characterization of 3D-Printed Polymers, Addit. Manuf., 20, 44-67, 2018.
  18. Croccolo D., De Agostinis M., and Olmi G., Experimental Characterization and Analytical Modelling of the Mechanical Behaviour of Fused Deposition Processed Parts Made of ABS-M30, Comput. Mater. Sci., 79, 506-518, 2013.
  19. McNally T., Pötschke P., Halley P., Murphy M., Martin D., Bell S.E.J., Brennan G.P., Bein D., Lemoine P., and Quinn J.P., Polyethylene Multiwalled Carbon Nanotube Composites, Polymer, 46, 8222-8232, 2005.
  20. Ma P.C., Siddiqui N.A., Marom G., and Kim J.K., Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review, Compos. Part A-Appl. Sci. Manuf., 41, 1345-1367, 2010.
  21. Mousavi L., Nazockdast H., Mohammadi Y., Azizi H., and Saleh Z., The Effect of Mixing Process on Linear Viscoelastic and Electrical Properties of ABS/MWNT Nanocomposites, J. Appl. Polym. Sci., 125, E260-E267, 2012.
  22. Singh B.K., Kar P., Shrivastava N.K., Banerjee S., and Khatua B.B., Electrical and Mechanical Properties of Acrylonitrile-Butadiene-Styrene/Multiwall Carbon Nanotube Nanocomposites Prepared by Melt-Blending, J. Appl. Polym. Sci., 124, 3165-3174, 2012.
  23. Al-Saleh M.H., Al-Anid H.K., and Hussain Y.A., CNT/ABS Nanocomposites by Solution Processing: Proper Dispersion and Selective Localization for Low Percolation Threshold, Compos. Part A-Appl. Sci. Manuf., 46, 53-59, 2013.
  24. Shrivastava N.K., Suin S., Maiti S., and Khatua B.B., Ultralow Electrical Percolation Threshold in Poly(Styrene-co-Acrylonitrile)/Carbon Nanotube Nanocomposites, Ind. Eng. Chem. Res., 52, 2858-2868, 2013.
  25. Rankouhi B., Javadpour S., Delfanian. F., and Letcher T., Failure Analysis and Mechanical Characterization of 3D Printed ABS with Respect to Layer Thickness and Orientation, J. Fail. Anal. Preven., 16, 467-481, 2016.
  26. Sood A.K., Ohdar R.K., Mahapatra S.S., Parametric Appraisal of Mechanical  Property of Fused Deposition Modelling Processed Parts, Mater. Design, 31, 287-295, 2010.
  27. Christiyan K.G.J., Chandrasekhar U., and Venkateswarlu K., Influence of Raster Orientation and Layer Thickness on Mechanical Properties of ABS Material Using FDM Process, IJASRE, 3, 1-6, 2014.
  28. Nancharaiah T., Raju D.R., and Raju V.R., An Experimental Investigation on Surface Quality and Dimensional Accuracy of FDM Components, Int. J. Emerg. Technol., 1, 106-111, 2010.