اثر میکروتوپوگرافی سطحی بر ترشوندگی فیلم پلی‌دی‌متیل‌سیلوکسان: ابرآب‌گریزی

نوع مقاله: پژوهشی

نویسندگان

تبریز، شهر جدید سهند، دانشگاه صنعتی سهند، دانشکده مهندسی پلیمر، کد پستی 5331817634

10.22063/jipst.2020.1720

چکیده

فرضیه: پیشرفت‌های اخیر در میکرو و نانوفناوری امکان ایجاد سطوح میکرو یا نانوساختار کاربردی با ویژگی میکرو و نانوتوپوگرافی سطحی را فراهم می‌کند که می‌توانند خواص چسبندگی کمی را نشان دهند. دسته بسیار مهمی از این ساختارها، سطوح ابرآب‌گریز بوده که به‌شدت دافع آب هستند. در کار حاضر، اثرهای میکروتوپوگرافی سطحی بر رفتار ترشوندگی فیلم لاستیک پلی‌دی‌متیل‌سیلوکسان (PDMS) با هدف ایجاد سطح ابرآب‌گریز بررسی شده است.
روش‌ها: آرایه‌هایی از الگوی میکروستون‌ها با الهام از ساختارهای زیستی موجود در طبیعت با استفاده از روش میکرولیتوگرافی نرم و با نسبت‌های مختلف از گام به پهنا روی سطح PDMS ایجاد شد. به همین دلیل قالب‌هایی با استفاده از روش‌های میکروساخت و لیتوگرافی نوری ساخته شد. الگوی قالب‌ها بر اساس طرح ستون‌های وارونه بوده و با استفاده از حکاکی ناهمسانگرد سطح ویفر سیلیکون (روش حکاکی یون واکنشی عمیق، DRIE) به دو صورت قالب سیلیکونی با نسبت منظر بزرگ و قالب نورمقاوم با نسبت منظر کوچک، تهیه شد.
یافته‌ها: میکروستون‌های ساخته‌شده روی قالب سیلیکون دارای موج‌های نانومقیاسی بودند که ناشی از مراحل چندگانه حکاکی و اثرناپذیرسازی دیواره‌های جانبی در فرایند DRIE است. مهرهای لاستیکی نسخه‌های عینی از قالب بوده (نسخه‌های منفی) و از رزین PDMS قالب‌گیری شدند. مهرهای سیلیکونی آرایه‌های منظمی از برخی ویژگی‌های برجسته بودند که امکان انتقال الگو روی زیرلایه هدف را طی فرایند چاپ میکروتماسی فراهم می‌آورد. شکل‌دهی نسبت‌های متعدد گام میان ستون‌ها به پهنای آن‌ها برای بهینه‌سازی ارتباط بین توپوگرافی سطحی و رفتار ترشوندگی فیلم PDMS با استفاده از اندازه‌گیری‌های زاویه تماس ایستا آب انجام شد. در پژوهش حاضر، این ساختارها به خواص آب‌گریزی لاستیک سیلیکون ارتباط داده شد و برای الگوهای مختلف سطحی، انتقال از حالت مدل مرکب (Cassie-Baxter) به مدل تر (Wenzel) شناسایی شد. مشاهده شد، زاویه تماس وابسته به نوع شکل‌دهی میکروستون‌ها در انتقال از مدل Cassie-Baxter به مدل Wenzel در اندازه گام 60mm~ قرار می‌گیرد.   

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Surface Microtopography on Wettability of Poly(dimethylsiloxane) Film: Superhydrophobicity

نویسندگان [English]

  • Shayesteh Khakvand
  • Kiyumars Jalili
  • Fatemeh Hassanpour
  • Farhang Abbasi
Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Postal Code 5331817634, Tabriz, Iran
چکیده [English]

Hypothesis: Recent advances in micro- and nanotechnology have led to possible design of functional micro/nanostructured surfaces with micro/nanotopography features that can exhibit low adhesion properties. An important example of such structures is superhydrophobic surface, which is extremely water repellent. In the present work, the effects of surface microtopography on the wetting of poly(dimethylsiloxane) (PDMS) rubber film with the goal of producing superhydrophobic surface are investigated.
Methods: Micropillar arrays inspired by biological structures found in nature are produced on PDMS surface using a soft microlithography technique with different pitch/width ratios. To this end, the masters are fabricated using conventional microfabrication techniques and photolithography. Master designs tested are inverted pillar shape fabricated by anisotropic etching of silicon (reactive-ion etching, DRIE), a high aspect ratio master and a low aspect ratio photoresist master.
Findings: Our fabricated pillars have nano-scale ripples that arise from the series of alternating, independent silicon etching and sidewall passivation steps used in the DRIE process. The elastomeric stamps are negative replicas of the masters and they are fabricated by PDMS. The stamps have a regular array of protruding features, in order to make a pattern transfer to the target substrate during m-contact printing. Several pitch/width ratios are configured to optimize the relationship between surface topography and wetting behavior of PDMS film using static water contact angle measurements. We have correlated these structures with PDMS rubber hydrophobicity and have also characterized the transition from the composite (Cassie-Baxter) to wetted (Wenzel) states for different types of surface structures. The surface topography-dependent contact angle of water underwent a transition from Cassie-Baxter to Wenzel states at pitch size ~60 mm.

کلیدواژه‌ها [English]

  • PDMS rubber
  • superhydrophobicity
  • surface microtopography
  • soft lithography
  • reactive-ion etching
  1. Nguyen L., Hang M., Wang W., Tian Y., Wang L., McCarthy T. J., and Chen W., Simple and Improved Approaches to Long-Lasting, Hydrophilic Silicones Derived from Commercially Available Precursors, ACS Appl. Mater. Interfaces, 24, 22876-22883, 2014.
  2. Faria A.M., Collins C.H., and Jardim Isabel C.S.F., State-of-the-Art in Immobilized Polymer Stationary Phases for High-Performance Liquid Chromatography, J. Braz. Chem. Soc., 8, 1385-1398, 2009.
  3. Hu S., Ren X., Bachman M., Sims C.E., Li G. P., and Allbritton N., Surface Modification of Poly(dimethylsiloxane) Microfluidic Devices by Ultraviolet Polymer Grafting, Anal. Chem., 16, 4117-4123, 2002.
  4. Mata A., Fleischman A.J., and Roy S., Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems, Biomed. Microdevices, 4, 281-293, 2005.
  5. Kovach K.M., Capadona J.R., Gupta A.S., and Potkay J.A., The Effects of PEG-Based Surface Modification of PDMS Microchannels on Long-Term Hemocompatibility, J. Biomed. Mater. Res. A, 12, 4195-4205, 2014.
  6. Ang J.Y., Chan B.Q.Y., Kai D., and Loh X.J., Engineering Porous Water-Responsive Poly(PEG/PCL/PDMS Urethane) Shape Memory Polymers, Macromol. Mater. Eng., 9, 1700174, 2017.
  7. Chung B.G., Lee K.H., Khademhosseini A., and Lee S.H. Microfluidic Fabrication of Microengineered Hydrogels and Their Application in Tissue Engineering, Lab Chip, 1, 45-59, 2012.
  8. Onda T., Shibuichi S, Satoh N., and Tsujii K., Super-Water-Repellent Fractal Surfaces, Langmuir, 9, 2125-2127, 1996.
  9. Wang J., Wen Y., Hu J., Song Y., and Jiang L., Fine Control of the Wettability Transition Temperature of Colloidal-Crystal Films: From Superhydrophilic to Superhydrophobic, Adv. Funct. Mater., 2, 219-225, 2007.
  10. Jin M., Feng X., Xi J., Zhai J., Cho K., Feng L., and Jiang L., Super-hydrophobic PDMS Surface with Ultra-Low Adhesive Force, Macromol. Rapid Commun., 22, 1805-1809, 2005.
  11. Drelich J., Chibowski E., Meng D.D., and Terpilowski K., Hydrophilic and Superhydrophilic Surfaces and Materials, Soft Matter, 21, 9804-9828, 2011.
  12. Wenzel R.N., Resistance of Solid Surfaces to Wetting by Water, Ind. Eng. Chem., 8, 988-994, 1936.
  13. Cassie A.B.D. and Baxter S., Wettability of Porous Surfaces, Trans. Faraday Soc., 40, 546-551, 1944.
  14. Carter E.G. and Jones D.C., An Experimental Test of the Validity of Antonow’s Rule, Trans. Faraday Soc., 30, 1027-1038, 1934.
  15. Dorrer C. and Rühe J., Condensation and Wetting Transitions on Microstructured Ultrahydrophobic Surfaces, Langmuir, 7, 3820-3824 , 2007.
  16. Owens D.K. and Wendt R.C., Estimation of the Surface Free Energy of Polymers, J. Appl. Polym. Sci., 8. 1741-1747, 1969.
  17. Alen S.K., Farhat N., and Rahman M.A., Analytical Modeling of Wetting States and Simulation of Drop Shape on Microstructured Surfaces, AIP Conf. Proc., 1754, 050043, 2016.
  18. Law K.Y. and Zhao H., Surface Wetting: Characterization, Contact Angle, and Fundamentals, Springer, Switzerland, 2016.
  19. Qiu Z. Y., Chen C., Wang X.M., and Lee I.S., Advances in the Surface Modification Techniques of Bone-Related Implants for 10 Years, Regen. Biomater., 1, 67-79, 2014.
  20. Govindarajan T. and Shandas R., A Survey of Surface Modification Techniques for Next-Generation Shape Memory Polymer Stent Devices, Polymers, 9, 2309-2331, 2014.
  21. Jaganathan S.K., Balaji A., Vellayappan M.V., Subramanian A.P., John A.A., Asokan M.K., and Supriyanto E. Radiation-Induced Surface Modification of Polymers for Biomaterial Application, J. Mater. Sci., 50, 2007-2018, 2015.
  22. Abbasi F., Mirzadeh H., and Katbab A.A., Modification of Polysiloxane Polymers for Biomedical Applications: A Review. Polym. Int., 12, 1279-1287, 2001.
  23. Roman G.T., Hlaus T., Bass K.J., Seelhammer T.G., and Culbertson C.T., Sol-gel Modified Poly(dimethylsiloxane) Microfluidic Devices with High Electroosmotic Mobilities and Hydrophilic Channel Wall Characteristics, Anal. Chem., 5, 1414-1422, 2005.
  24. Nguyen L., Hang M., Wang W., Tian Y., Wang L., McCarthy T. J., and Chen W., Simple and Improved Approaches to Long-Lasting, Hydrophilic Silicones Derived from Commercially Available Precursors, Simple and Improved Approaches to Long-Lasting, Hydrophilic Silicones Derived from Commercially Available Precursors, ACS Appl. Mater. Interfaces, 24, 22876-22883, 2014.
  25. Nakata K., Kimura H., Sakai M., Ochiai T., Sakai H., Murakami T., and Fujishima A., UV/Thermally Driven Rewritable Wettability Patterns on TiO2-PDMS Composite Films, ACS Appl. Mater. Interfaces, 9, 2485-2488, 2010.
  26. Fritz J.L. and Owen M.J., Hydrophobic Recovery of Plasma-Treated Polydimethylsiloxane, J. Adhes., 54, 33-45, 1995.
  27. Zhang Z., Wang J., Tu Q., Nie N., Sha J., Liu W., and Wang J., Surface Modification of PDMS by Surface-Initiated Atom Transfer Radical Polymerization of Water-Soluble Dendronized PEG Methacrylate, Colloid.Surf. B: Biointerfaces, 1, 85-92, 2011.
  28. Guo Z. and Li T. Fundamentals and Applications of Nanomaterials, Artech House, Norwood, MA, 2009.
  29. Nanostructure Control of Materials, Hannink R.H.J. and Hill A.J. (Eds.), CRC, Woodhead, Cambridge, 2006.
  30. Lithography, BoD–Books on Demand, Wang M., (Ed.), 2010.
  31. Levinson H.J., Principles of Lithography, Bellingham, WA, SPIE, 2005.
  32. Cortese B., D’Amone S., Manca M., Viola I., Cingolani R., and Gigli G., Superhydrophobicity Due to the Hierarchical Scale Roughness of PDMS Surfaces, Langmuir, 6, 2712-2718, 2008.
  33. Tropmann A., Tanguy L., Koltay P., Zengerle R., and Riegger L. Completely Superhydrophobic PDMS Surfaces for Microfluidics, Langmuir , 22, 8292-8295, 2012.
  34. Khorasani M.T. and Mirzadeh H., In Vitro Blood Compatibility of Modified PDMS Surfaces as Superhydrophobic and Superhydrophilic Materials, J. Appl. Polym. Sci., 3, 2042-2047, 2004.
  35. Yong J., Chen F., Yang Q., Zhang D., Bian H., Du G., and Hou, X. Controllable Adhesive Superhydrophobic Surfaces Based on PDMS Microwell Arrays, Langmuir, 10, 3274-3279, 2013.
  36. Zhang J. and Han Y., A Topography/Chemical Composition Gradient Polystyrene Surface: Toward the Investigation of the Relationship Between Surface Wettability and Surface Structure and Chemical Composition, Langmuir, 3, 796-801, 2008.
  37. Byun D., Hong J., Ko J.H., Lee Y.J., Park H.C., Byun B.K., and Lukes J.R., Wetting Characteristics of Insect Wing Surfaces, J. Bionic Eng., 1, 63-70, 2009.
  38. Mao P. and Han J., Fabrication and Characterization of 20 nm Planar Nanofluidic Channels by Glass–Glass and Glass–Silicon Bonding, Lab Chip, 8, 837-844, 2005.
  39. Kamieniecki E. and Foggiato G., Analysis and Control of Electrically Active Contaminants by Surface Charge Analysis, Handbook of Semiconductor Wafer Cleaning Technology, Noyes Publications, 72-77, 1993.
  40. Wu C.C., Ko F.H., Yang Y.S., Hsia D.L., Lee B.S., and Su T.S., Label-Free Biosensing of a Gene Mutation Using a Silicon Nanowire Field-Effect Transistor, Biosens. Bioelectron., 4, 820-825, 2009.
  41. Sharp K.G., Blackman G.S., Glassmaker N.J., Jagota A., and Hui C.Y.,  Effect of Stamp Deformation on the Quality of Microcontact Printing: Theory and Experiment, Langmuir, 15, 6430-6438, 2004.
  42. Karimi R., Alimardani M., Razzaghi-Kashani M., and Pourhossaini M.R., Mechanistic Evaluation of Silane-Spacer Length on Dynamic and Tribological Behavior of SBR-Modified Silica Rubber Composite, Iran. J. Polym. Sci. Technol. (Persian), 30, 489-500, 2018.
  43. Yamaguchi Y., Kusudo H., Surblys D., Omori T., and Kikugawa G., Interpretation of Young’s Equation for a Liquid Droplet on a Flat and Smooth Solid Surface: Mechanical and Thermodynamic Routes with a Simple Lennard-Jones Liquid, J. Chem. Phys., 4, 044701, 2019.
  1. Ye L., Zhang Y., Song C., Li Y., and Jiang B., A Simple Sol-Gel Method to Prepare Superhydrophilic Silica Coatings, Mater. Lett., 188, 316-318, 2017.